Holomorphic maps from Sasakian manifolds into Kähler manifolds

Bin Shen , Yibing Shen , Xi Zhang

Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (4) : 575 -586.

PDF
Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (4) : 575 -586. DOI: 10.1007/s11401-013-0779-7
Article

Holomorphic maps from Sasakian manifolds into Kähler manifolds

Author information +
History +
PDF

Abstract

The authors consider ±(Φ, J)-holomorphic maps from Sasakian manifolds into Kähler manifolds, which can be seen as counterparts of holomorphic maps in Kähler geometry. It is proved that those maps must be harmonic and basic. Then a Schwarz lemma for those maps is obtained. On the other hand, an invariant in its basic homotopic class is obtained. Moreover, the invariant is just held in the class of basic maps.

Keywords

Sasakian manifold / Harmonic / Schwarz lemma / Homotopic invariant

Cite this article

Download citation ▾
Bin Shen, Yibing Shen, Xi Zhang. Holomorphic maps from Sasakian manifolds into Kähler manifolds. Chinese Annals of Mathematics, Series B, 2013, 34(4): 575-586 DOI:10.1007/s11401-013-0779-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Boyer C P, Galicki K. On Sasakian-Einstein geometry. Intenat. J. Math., 2000, 11: 873-909

[2]

Boyer C P, Galicki K. New Einstein metrics in dimension five. J. Diff. Geom., 2001, 57: 443-463

[3]

Boyer, C. P. and Galicki, K., Sasakian geometry, holonomy and supersymmetry, to appear. arXiv: math/0703231

[4]

Boyer C P, Galicki K, Kollor J. Einstein metrics on spheres. Ann. Math., 2005, 162: 557-580

[5]

Boyer C P, Galicki K, Matzeu P. On Eta-Einstein Sasakian geometry. Comm. Math. Phys., 2006, 262: 177-208

[6]

Cvetic M, Lu H, Page D N New Einstein-Sasaki spaces in five and higher dimensions. Phys. Rev. Lett., 2005, 95(7): 071101

[7]

Eells J, Lemaire L. Secected Topics in Harmonic Maps, Regional Conference Series in Mathematics, Vol. 50, A. M. S., Providence, RI, 1983

[8]

Futaki A, Ono H, Wang G. Transverse Kähler geometry of Sasaki manifolds and toric Sasaki-Einstein manifolds. J. Diff. Geom., 2009, 83(3): 585-636

[9]

Godlinski M, Kopczynski W, Nurowski P. Locally Sasakian manifolds. Classical Quantum Gravity, 2000, 17: 105-115

[10]

Kacimi-Alaoui A E. Operateurs transversalement elliptiques sur un feuilletage Riemannien et applications. Compos. Math., 1990, 79: 57-106

[11]

Li P, Yau S T. Curvature and holomorphic mappings of complete Kähler manifolds. Compos. Math., 1990, 73: 125-144

[12]

Maldacena J. The Large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys., 1998, 2: 231-252

[13]

Martelli D, Sparks J. Toric Sasaki-Einstein metrics on S 2 × S 3. Phys. Lett. B, 2005, 621: 208-212

[14]

Martelli D, Sparks J. Toric geometry, Sasaki-Einstein manifolds and a new infinite class of AdS/CFT duals. Comm. Math. Phys., 2006, 262: 51-89

[15]

Martelli D, Sparks J, Yau S T. The geometric dual of a-maximisation for toric Sasaki-Einstein manifolds. Comm. Math. Phy., 2006, 268(1): 39-56

[16]

Martelli D, Sparks J, Yau S T. Sasaki-Einstein manifolds and volume minimisation. Comm. Math. Phy., 2008, 280(3): 611-673

[17]

Sasaki S. On differentiable manifolds with certain structures which are closely related to almost-contact structure. Tohoku Math. J., 1960, 2: 459-476

[18]

Siu Y T. The complex-analyticity of harmonic maps and the strong rigidity of compact Kahler manifolds. Ann. Math., 1980, 112: 73-111

[19]

Tosatti V. A general Schwarz lemma for almost Hermitian manifolds. Commun. Analysis Geom., 2007, 15: 1063-1086

[20]

Yau S T. A general Schwarz lemma for Kähler manifolds. Amer. J. Math., 1978, 100: 197-203

[21]

Zhang X. Energy properness and Sasakian-Einstein metrics. Comm. Math. Phys., 2011, 306: 229-260

AI Summary AI Mindmap
PDF

293

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/