Carleson type measures for harmonic mixed norm spaces with application to Toeplitz operators

Zhangjian Hu , Xiaofen Lv

Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (4) : 623 -638.

PDF
Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (4) : 623 -638. DOI: 10.1007/s11401-013-0776-x
Article

Carleson type measures for harmonic mixed norm spaces with application to Toeplitz operators

Author information +
History +
PDF

Abstract

Let Ω be a bounded domain in ℝ n with a smooth boundary, and let h p,q be the space of all harmonic functions with a finite mixed norm. The authors first obtain an equivalent norm on h p,q, with which the definition of Carleson type measures for h p,q is obtained. And also, the authors obtain the boundedness of the Bergman projection on h p,q which turns out the dual space of h p,q. As an application, the authors characterize the boundedness (and compactness) of Toeplitz operators T µ on h p,q for those positive finite Borel measures µ.

Keywords

Carleson type measure / Harmonic mixed norm space / Toeplitz operator / Bergman projection

Cite this article

Download citation ▾
Zhangjian Hu, Xiaofen Lv. Carleson type measures for harmonic mixed norm spaces with application to Toeplitz operators. Chinese Annals of Mathematics, Series B, 2013, 34(4): 623-638 DOI:10.1007/s11401-013-0776-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Stein E M. Boundary Behavior of Holomorphic Functions of Several Complex Variables, 1972, Princeton: Princeton Univ. Press

[2]

Ahern P, Jevtić M. Duality and multipliers for mixed norm spaces. Michigan Math. J., 1983, 30(1): 53-64

[3]

Gadbois S. Mixed norm generalizations of Bergman spaces and duality. Proc. Amer. Math. Soc., 1988, 104: 1171-1180

[4]

Shi J H. Duality and multipliers for mixed norm spaces in the ball I, II. Complex Variables Theory Appl., 1994, 25(2): 119-157

[5]

Hu Z J. Extended Cesaro operators on mixed norm spaces. Proc. Amer. Math. Soc., 2003, 131: 2171-2179

[6]

Hu Z J. Estimates for the integral means of harmonic functions on bounded domains in R n. Sci. China Ser. A, 1995, 38(1): 36-46

[7]

Kang H, Koo H. Estimates of the harmonic Bergman kernel on smooth domains. J. Funct. Anal., 2001, 185: 220-239

[8]

Choe B R, Koo H, Yi H. Positive Toeplitz operators between the harmonic Bergman spaces. Potential Anal., 2002, 17(4): 307-335

[9]

Luecking D H. Trace ideal criteria for Toeplitz operators. J. Funct. Anal., 1987, 73(2): 345-368

[10]

Zhu K H. Positive Toeplitz operators on weighted Bergman spaces of bounded symmetric domains. J. Operator Th., 1988, 20: 329-357

[11]

Miao J. Toeplitz operators on harmonic Bergman spaces. Integ. Equ. Oper. Th., 1997, 27(4): 426-438

[12]

Choe B R, Lee Y J, Na K. Toeplitz operators on harmonic Bergman spaces. Nagoya Math. J., 2004, 174: 165-186

[13]

Choe B R, Lee Y J, Na K. Positive Toeplitz operators from a harmonic Bergman space into another. Tohoku Math. J., 2004, 56(2): 255-270

[14]

Choe B R, Koo H, Lee Y. Positive Schatten class Toeplitz operators on the ball. Studia Math., 2008, 189(1): 65-90

[15]

Choe B R, Koo H, Na K. Positive Toeplitz operators of Schatten-Herz type. Nagoya Math. J., 2007, 185: 31-62

[16]

Choe B R, Nam K. Toeplitz operators and Herz spaces on the half-space. Integ. Equ. Oper. Th., 2007, 59(4): 501-521

[17]

Choe B R, Nam K. Berezin transform and Toeplitz operators on harmonic Bergman spaces. J. Funct. Anal., 2009, 257(10): 3135-3166

[18]

Zhu K H. Spaces of Holomorphic Functions in the Unit Ball, 2005, New York: Springer-Verlag

[19]

Oleinik O L. Embedding theorems for weighted classes of harmonic and analytic functions. J. Soviet Math., 1978, 9: 228-243

[20]

Tchoundja E. Carleson measures for the generalizaed Bergman spaces via a T (1)-type theorem. Ark. Mat., 2008, 46: 377-406

[21]

Taylor M E. Partial Defferential Equations III, 1996, New York: Springer-Verlag

[22]

Rudin W. Real and Complex Analysis, 1987 3rd ed. New York: McGraw-Hill

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/