Global null controllability of the 1-dimensional nonlinear slow diffusion equation

Jean-Michel Coron , Jesús Ildefonso Díaz , Abdelmalek Drici , Tommaso Mingazzini

Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (3) : 333 -344.

PDF
Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (3) : 333 -344. DOI: 10.1007/s11401-013-0774-z
Article

Global null controllability of the 1-dimensional nonlinear slow diffusion equation

Author information +
History +
PDF

Abstract

The authors prove the global null controllability for the 1-dimensional nonlinear slow diffusion equation by using both a boundary and an internal control. They assume that the internal control is only time dependent. The proof relies on the return method in combination with some local controllability results for nondegenerate equations and rescaling techniques.

Keywords

Nonlinear control / Nonlinear slow diffusion equation / Porous medium equation

Cite this article

Download citation ▾
Jean-Michel Coron, Jesús Ildefonso Díaz, Abdelmalek Drici, Tommaso Mingazzini. Global null controllability of the 1-dimensional nonlinear slow diffusion equation. Chinese Annals of Mathematics, Series B, 2013, 34(3): 333-344 DOI:10.1007/s11401-013-0774-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alt H W, Luckhaus S. Quasilinear elliptic-parabolic differential equations. Math. Z., 1983, 183(3): 311-341

[2]

Antontsev S N, Díaz J I, Shmarev S. Energy methods for free boundary problems, Applications to Nonlinear PDEs and Fluid Mechanics, 2002, Boston, MA: Birkhäuser Boston Inc.

[3]

Barenblatt G I. On some unsteady motions of a liquid and gas in a porous medium. Akad. Nauk SSSR. Prikl. Mat. Meh., 1952, 16: 67-68

[4]

Beceanu M. Local exact controllability of the diffusion equation in one dimension. Abstr. Appl. Anal., 2003, 14: 793-711

[5]

Brezis H. Propriétés régularisantes de certains semi-groupes non linéaires. Israel J. Math., 1971, 9: 513-534

[6]

Brézis H. Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, Contributions to Non-linear Functional Analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1971), 1971, New York: Academic Press 101-156

[7]

Brézis H. Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, 1973, Amsterdam: North Holland

[8]

Chapouly M. Global controllability of nonviscous and viscous Burgers-type equations. SIAM J. Control Optim., 2009, 48(3): 1567-1599

[9]

Coron J M. Global asymptotic stabilization for controllable systems without drift. Math. Control Signals Systems, 1992, 5(3): 295-312

[10]

Coron J M. On the controllability of 2-D incompressible perfect fluids. J. Math. Pures Appl. (9), 75^(2), 1996 155-188

[11]

Coron J M. Control and Nonlinearity, 2007, Providence, RI: A. M. S.

[12]

Díaz G, Díaz J I. Finite extinction time for a class of nonlinear parabolic equations. Comm. Part. Diff. Eq., 1979, 4(11): 1213-1231

[13]

Díaz J I, Ramos Á M M. Positive and negative approximate controllability results for semilinear parabolic equations. Rev. Real Acad. Cienc. Exact. Fís. Natur. Madrid, 1995, 89(1–2): 11-30

[14]

Díaz J I, Ramos Á M M Bristeau M-O, Etgen G, Fitzgibbon W Approximate controllability and obstruction phenomena for quasilinear diffusion equations. Computational Science for the 21st Century, 1997, Chichester: John Wiley and Sons 698-707

[15]

Díaz J I, Ramos Á M M Valle Sánchez A, Caraballo T Un método de viscosidad para la controlabilidad aproximada de ciertas ecuaciones parabólicas cuasilineales, Actas de Jornada Científica en Homenaje al Prof. Universidad de Sevilla, 1997 133-151

[16]

Evans L C. Partial differential equations, 2010 Second Edition Providence, RI: A. M. S.

[17]

Fabre C, Puel J P, Zuazua E. Approximate controllability of the semilinear heat equation. Proc. Roy. Soc. Edinburgh Sect. A, 1995, 125(1): 31-61

[18]

Filo J. A nonlinear diffusion equation with nonlinear boundary conditions: method of lines. Math. Slovaca, 1988, 38(3): 273-296

[19]

Fursikov A V, Imanuvilov O Y. Controllability of evolution equations, 1996, Seoul: Seoul National University Research Institute of Mathematics Global Analysis Research Center

[20]

Henry J. Etude de la contrôlabilité de certains équations paraboliques, 1978, Paris: Université de Paris VI

[21]

Lions J L. Quelques méthodes de résolution des probl’emes aux limites non linéaires, 1969, Paris: Dunod

[22]

Marbach F. Fast global null controllability for a viscous Burgers equation despite the presence of a boundary layer, 2013

[23]

Vázquez J L. The porous medium equation, Oxford Mathematical Monographs, 2007, Oxford: The Clarendon Press, Oxford University Press

AI Summary AI Mindmap
PDF

86

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/