Semi-linear wave equations with effective damping

Marcello D’Abbicco , Sandra Lucente , Michael Reissig

Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (3) : 345 -380.

PDF
Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (3) : 345 -380. DOI: 10.1007/s11401-013-0773-0
Article

Semi-linear wave equations with effective damping

Author information +
History +
PDF

Abstract

The authors study the Cauchy problem for the semi-linear damped wave equation $u_{tt} - \Delta u + b\left( t \right)u_t = f\left( u \right), u\left( {0,x} \right) = u_0 \left( x \right), u_t \left( {0,x} \right) = u_1 \left( x \right)$ in any space dimension n ≥ 1. It is assumed that the time-dependent damping term b(t) > 0 is effective, and in particular tb(t) → ∞ as t → ∞. The global existence of small energy data solutions for |f(u)| ≈ |u| p in the supercritical case of $p > \tfrac{2}{n}$ and $p \leqslant \tfrac{n}{{n - 2}}$ for n ≥ 3 is proved.

Keywords

Semi-linear equations / Damped wave equations / Critical exponent / Global existence

Cite this article

Download citation ▾
Marcello D’Abbicco, Sandra Lucente, Michael Reissig. Semi-linear wave equations with effective damping. Chinese Annals of Mathematics, Series B, 2013, 34(3): 345-380 DOI:10.1007/s11401-013-0773-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

D’Abbicco, M., The threshold between effective and noneffective damping for semilinear wave equations, to appear. arXiv: 1211.0731

[2]

D’Abbicco M, Ebert M R. Hyperbolic-like estimates for higher order equations. J. Math. Anal. Appl., 2012, 395: 747-765

[3]

D’Abbicco M, Ebert M R. A class of dissipative wave equations with time-dependent speed and damping. J. Math. Anal. Appl., 2013, 399: 315-332

[4]

D’Abbicco M, Lucente S. A modified test function method for damped wave equations. Advanced Nonlinear Studies, 2013

[5]

Friedman A. Partial Differential Equations, 1976, New York: Krieger

[6]

Fujita H. On the blowing up of solutions of the Cauchy problem for u t = Δu + u 1+α. J. Fac. Sci. Univ. Tokyo, 1966, 13: 109-124

[7]

Ikehata R, Miyaoka Y, Nakatake T. Decay estimates of solutions for dissipative wave equations in ℝN with lower power nonlinearities. J. Math. Soc. Japan, 2004, 56: 365-373

[8]

Ikehata R, Ohta M. Critical exponents for semilinear dissipative wave equations in ℝN. J. Math. Anal. Appl., 2002, 269: 87-97

[9]

Ikehata R, Tanizawa K. Global existence of solutions for semilinear damped wave equations in R N with noncompactly supported initial data. Nonlinear Analysis, 2005, 61: 1189-1208

[10]

Ikehata R, Todorova G, Yordanov B. Critical exponent for semilinear wave equations with a subcritical potential. Funkcial. Ekvac., 2009, 52: 411-435

[11]

Lin J, Nishihara K, Zhai J. Critical exponent for the semilinear wave equation with time-dependent damping. Disc. Contin. Dynam. Syst., 2012, 32(12): 4307-4320

[12]

Matsumura A. On the asymptotic behavior of solutions of semi-linear wave equations. Publ. RIMS., 1976, 12: 169-189

[13]

Nishihara K. Decay properties for the damped wave equation with space dependent potential and absorbed semilinear term. Commun. Part. Diff. Eq., 2010, 35: 1402-1418

[14]

Nishihara K. Asymptotic behavior of solutions to the semilinear wave equation with time-dependent damping. Tokyo J. of Math., 2011, 34: 327-343

[15]

Nakao M, Ono K. Existence of global solutions to the Cauchy problem for the semilinear dissipative wave equations. Math. Z., 1993, 214: 325-342

[16]

Todorova G, Yordanov B. Critical exponent for a nonlinear wave equation with damping. J. Diff. Eq., 2001, 174: 464-489

[17]

Wirth J. Asymptotic properties of solutions to wave equations with time-dependent dissipation, 2004

[18]

Wirth J. Wave equations with time-dependent dissipation II. Effective dissipation. J. Diff. Eq., 2007, 232: 74-103

[19]

Zhang Q S. A blow-up result for a nonlinear wave equation with damping: the critical case. C. R. Acad. Sci. Paris Sér. I Math., 2001, 333: 109-114

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/