Qualitative analysis of gradient-type systems with oscillatory nonlinearities on the Sierpiński gasket

Gabriele Bonanno , Giovanni Molica Bisci , Vicenţiu Rădulescu

Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (3) : 381 -398.

PDF
Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (3) : 381 -398. DOI: 10.1007/s11401-013-0772-1
Article

Qualitative analysis of gradient-type systems with oscillatory nonlinearities on the Sierpiński gasket

Author information +
History +
PDF

Abstract

Under an appropriate oscillating behavior either at zero or at infinity of the nonlinear data, the existence of a sequence of weak solutions for parametric quasilinear systems of the gradient-type on the Sierpiński gasket is proved. Moreover, by adopting the same hypotheses on the potential and in presence of suitable small perturbations, the same conclusion is achieved. The approach is based on variational methods and on certain analytic and geometrical properties of the Sierpiński fractal as, for instance, a compact embedding result due to Fukushima and Shima.

Keywords

Sierpiński gasket / Nonlinear elliptic equation / Dirichlet form / Weak Laplacian

Cite this article

Download citation ▾
Gabriele Bonanno, Giovanni Molica Bisci, Vicenţiu Rădulescu. Qualitative analysis of gradient-type systems with oscillatory nonlinearities on the Sierpiński gasket. Chinese Annals of Mathematics, Series B, 2013, 34(3): 381-398 DOI:10.1007/s11401-013-0772-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alexander S. Some properties of the spectrum of the Sierpiński gasket in a magnetic field. Phys. Rev. B, 1984, 29: 5504-5508

[2]

Barlow M T, Kigami J. Localized eigenfunctions of the Laplacian on p.c.f. self-similar sets. J. London Math. Soc., 1997, 56: 320-332

[3]

Bartsch T, de Figueiredo D G. Infinitely many solutions of nonlinear elliptic systems. Progr. Nonlinear Differential Equations Appl., 1999, 35: 51-67

[4]

Bensedik A, Bouchekif M. On certain nonlinear elliptic systems with indefinite terms. Electron. J. Differential Equations, 2002, 83: 1-16

[5]

Boccardo L, de Figueiredo D G. Some remarks on a system of quasilinear elliptic equations. Nonlinear Differential Equations Appl., 2002, 9: 309-323

[6]

Bockelman B, Strichartz R S. Partial differential equations on products of Sierpiński gaskets. Indiana Univ. Math. J., 2007, 56: 1361-1375

[7]

Bonanno G, D’Aguì G. On the Neumann problem for elliptic equations involving the p-Laplacian. J. Math. Anal. Appl., 2009, 358: 223-228

[8]

Bonanno G, D’Aguì G. Multiplicity results for a perturbed elliptic Neumann problem. Abstr. Appl. Anal., 2010, 2010: 1-10

[9]

Bonanno G, Molica Bisci G. Infinitely many solutions for a boundary value problem with discontinuous nonlinearities. Bound. Value Probl., 2009, 2009: 1-20

[10]

Bonanno G, Molica Bisci G. Infinitely many solutions for a Dirichlet problem involving the p-Laplacian. Proc. Roy. Soc. Edinburgh Sect. A, 2010, 140: 737-752

[11]

Bonanno G, Molica Bisci G, O’Regan D. Infinitely many weak solutions for a class of quasilinear elliptic systems. Math. Comput. Modelling, 2010, 52: 152-160

[12]

Bonanno G, Molica Bisci G, Rădulescu V. Infinitely many solutions for a class of nonlinear eigenvalue problems in Orlicz-Sobolev spaces. C. R. Acad. Sci. Paris Ser. I, 2011, 349: 263-268

[13]

Bonanno G, Molica Bisci G, Rădulescu V. Arbitrarily small weak solutions for a nonlinear eigenvalue problem in Orlicz-Sobolev spaces. Monatsh. Math., 2012, 165: 305-318

[14]

Bonanno G, Molica Bisci G, Rădulescu V. Infinitely many solutions for a class of nonlinear elliptic problems on fractals. C. R. Acad. Sci. Paris Ser. I, 2012, 350: 187-191

[15]

Bonanno G, Molica Bisci G, Rădulescu V. Variational analysis for a nonlinear elliptic problem on the Sierpiński gasket. ESAIM: Control, Optimisation and Calculus of Variations, 2012, 18: 941-953

[16]

Bozhkova Y, Mitidieri E. Existence of multiple solutions for quasilinear systems via fibering method. J. Differential Equations, 2003, 190: 239-267

[17]

Breckner B E, Rădulescu V, Varga C. Infinitely many solutions for the Dirichlet problem on the Sierpiński gasket. Analysis and Applications, 2011, 9: 235-248

[18]

Breckner B E, Repovš D, Varga C. On the existence of three solutions for the Dirichlet problem on the Sierpiński gasket. Nonlinear Anal., 2010, 73: 2980-2990

[19]

Ciarlet, P. G., Linear and Nonlinear Functional Analysis with Applications, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, in press.

[20]

Clément Ph, de Figueiredo D G, Mitidieri E. Positive solutions of semilinear elliptic systems. Comm. Partial Differential Equations, 1992, 17: 923-940

[21]

D’Aguì G, Molica Bisci G. Existence results for an elliptic Dirichlet problem. Matematiche, 2011, 1: 133-141

[22]

D’Aguì G, Molica Bisci G. Infinitely many solutions for perturbed hemivariational inequalities. Bound. Value Probl., 2011, 2011: 1-19

[23]

de Figueiredo D G. Semilinear elliptic systems: a survey of superlinear problems. Resenhas IME-USP, 1996, 2: 373-391

[24]

Falconer K J. Semilinear PDEs on self-similar fractals. Commun. Math. Phys., 1999, 206: 235-245

[25]

Falconer K J. Fractal Geometry: Mathematical Foundations and Applications, 2003 2nd edition Hoboken, NJ: John Wiley and Sons

[26]

Falconer K J, Hu J. Nonlinear elliptical equations on the Sierpiński gasket. J. Math. Anal. Appl., 1999, 240: 552-573

[27]

Fukushima M, Shima T. On a spectral analysis for the Sierpiński gasket. Potential Anal., 1992, 1: 1-35

[28]

Goldstein, S., Random walks and diffusions on fractals, Percolation Theory and Ergodic Theory of Infinite Particle Systems, H. Kesten (ed.), 121–129, IMA Math. Appl., Vol. 8, Springer-Verlag, New York. 1987.

[29]

Hai D D, Shivaji R. An existence result on positive solutions for a class of p-Laplacian systems. Nonlinear Anal., 2004, 56: 1007-1010

[30]

Hu J. Multiple solutions for a class of nonlinear elliptic equations on the Sierpiński gasket. Sci. China Ser. A, 2004, 47: 772-786

[31]

Hua C, Zhenya H. Semilinear elliptic equations on fractal sets. Acta Math. Sci. Ser. B, 2009, 29(2): 232-242

[32]

Kigami J. A harmonic calculus on the Sierpiński spaces. Japan J. Appl. Math., 1989, 8: 259-290

[33]

Kigami J. Analysis on Fractals, 2001, Cambridge: Cambridge University Press

[34]

Kristály A, Rădulescu V, Varga C. Variational Principles in Mathematical Physics, Geometry, and Economics: Qualitative Analysis of Nonlinear Equations and Unilateral Problems, 2010, Cambridge: Cambridge University Press

[35]

Kusuoka S. A diffusion process on a fractal, Probabilistic Methods in Mathematical Physics (Katata/Kyoto, 1985, 1987, Boston: Academic Press 251-274

[36]

Mandelbrot, B. B., How long is the coast of Britain? Statistical self-similarity and fractional dimension, Science, 156, 636–638.

[37]

Mandelbrot B B. Fractals: Form, Chance and Dimension, 1977, San Francisco: W. H. Freeman and Co.

[38]

Mandelbrot B B. The Fractal Geometry of Nature, 1982, San Francisco: W. H. Freeman and Co.

[39]

Omari P, Zanolin F. An elliptic problem with arbitrarily small positive solutions. Nonlinear Differential Equations, Electron. J. Differential Equations Conf., 2000, 5: 301-308

[40]

Rammal R. A spectrum of harmonic excitations on fractals. J. Phy. Lett., 1984, 45: 191-206

[41]

Rammal R, Toulouse G. Random walks on fractal structures and percolation clusters. J. Phys. Lett., 1983, 44: L13-L22

[42]

Ricceri B. A general variational principle and some of its applications. J. Comput. Appl. Math., 2000, 113: 401-410

[43]

Sierpiński W. Sur une courbe dont tout point est un point de ramification. Comptes Rendus, 1915, 160: 302-305

[44]

Strichartz R S. Analysis on fractals. Notices Amer. Math. Soc., 1999, 46: 1199-1208

[45]

Strichartz R S. Solvability for differential equations on fractals. J. Anal. Math., 2005, 96: 247-267

[46]

Strichartz, R. S., Differential Equations on Fractals, A. Tutorial (ed.), Princeton University Press, Princeton, 2006.

[47]

Zhang G Q, Liu X P, Liu S Y. Remarks on a class of quasilinear elliptic systems involving the (p, q)-Laplacian. Electron. J. Differential Equations, 2005, 2005: 1-10

AI Summary AI Mindmap
PDF

99

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/