Strong unique continuation of sub-elliptic operator on the Heisenberg group

Hairong Liu , Xiaoping Yang

Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (3) : 461 -478.

PDF
Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (3) : 461 -478. DOI: 10.1007/s11401-013-0768-x
Article

Strong unique continuation of sub-elliptic operator on the Heisenberg group

Author information +
History +
PDF

Abstract

In this paper, the Almgren’s frequency function of the following sub-elliptic equation with singular potential on the Heisenberg group: $- \mathcal{L}u + V\left( {z,t} \right)u = - X_i \left( {a_{ij} \left( {z,t} \right)X_j u} \right) + V\left( {z,t} \right)u = 0$ is introduced. The monotonicity property of the frequency is established and a doubling condition is obtained. Consequently, a quantitative proof of the strong unique continuation property for such equation is given.

Keywords

Heisenberg group / Frequency function / Doubling condition / Strong unique continuation principle

Cite this article

Download citation ▾
Hairong Liu, Xiaoping Yang. Strong unique continuation of sub-elliptic operator on the Heisenberg group. Chinese Annals of Mathematics, Series B, 2013, 34(3): 461-478 DOI:10.1007/s11401-013-0768-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Almgren F J Jr. Obata M. Dirichlet’s problem for multiple valued functions and the regularity of mass minimizing integral currents. Minimal Submanifolds and Geodesics, 1–6, 1979, Amsterdam: North Holland

[2]

Aronszajn N, Krzywicki A, Szarski J. A unique continuation theorems for exterior differential forms on Riemannian manifolds. Arkiv för Matematik, 1962, 4: 417-435

[3]

Bellaïche A. The tangent space in sub-Riemannian geometry. Progr. Math., 1996, 144: 1-78

[4]

Bonfiglioli A, Lanconelli E, Uguzzoni F. Stratified Lie Groups and Potential Theory for Their Sub-Laplacians, 2007, Berlin Heidelberg, New York: Springer-Verlag

[5]

Bony J M. Principe du maximum, intégalité de Harnack et unicité du probl`eme de Cauchy pour les operateurs elliptique degeneres. Ann. Inst. Fourier, Grenoble, 1969, 1(119): 277-304

[6]

Federer H. Geometric Measure Theory, 1969, Berlin, Heidelberg, New York: Springer-Verlag

[7]

Folland G B, Stein E M. Estimates for the $\bar \partial _b$ complex and analysis on the Heisenberg group. Comm. Pure Appl. Math., 1974, 27: 459-522

[8]

Garofalo N, Lanconelli E. Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation. Ann. Inst. Fourier, 1990, 44(2): 313-356

[9]

Garofalo N, Lin F H. Monotonicity properties of variational integrals, Ap weights and unique continuation. Indiana Univ. Math. J., 1986, 35: 245-267

[10]

Garofalo N, Vassilev D. Strong unique continuation properties of generalized Baouendi-Grushin operators. Comm. PDE, 2007, 32: 643-663

[11]

Hajlasz P, Koskela P. Sobolev Met Poincaré, 2000, Providence, RI: A. M. S.

[12]

Greiner P C. Spherical harmonics on the Heisenberg group. Canad. Math. Bull., 1980, 23(4): 383-396

[13]

Hörmander H. Hypoelliptic second-order differential equations. Acta Math., 1967, 119: 147-171

[14]

Jerison D S. The Poincaré inequality for vector fields satisfying Hörmander’s condition. Duke Math. J., 1986, 53: 503-523

[15]

Miller K. Nonunique continuation for uniformly parabolic and elliptic equations in self-adjoint divergence form with Hölder continuous coefficients. Arch. Rational Mech. Anal., 1974, 54: 105-117

[16]

Nagel A, Stein E M, Wainger S. Balls and metrics defined by vector fields I: basic properties. Acta Math., 1985, 155: 103-147

[17]

Rothschild L P, Stein E M. Hypoelliptic differential operators and nilpotent groups. Acta Math., 1976, 137: 247-320

[18]

Sanchez-Calle A. Fundamental solutions and geometry of sum of squares of vector fields. Inv. Math., 1984, 78: 143-160

[19]

Sun M B, Yang X P. Quasi-convex Functions in Carnot groups. Chin. Ann. Math., 2007, 28B(2): 235-242

AI Summary AI Mindmap
PDF

154

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/