The rain on underground porous media Part I: Analysis of a richards model

Christine Bernardi , Adel Blouza , Linda El Alaoui

Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (2) : 193 -212.

PDF
Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (2) : 193 -212. DOI: 10.1007/s11401-013-0766-z
Article

The rain on underground porous media Part I: Analysis of a richards model

Author information +
History +
PDF

Abstract

The Richards equation models the water flow in a partially saturated underground porous medium under the surface. When it rains on the surface, boundary conditions of Signorini type must be considered on this part of the boundary. The authors first study this problem which results into a variational inequality and then propose a discretization by an implicit Euler’s scheme in time and finite elements in space. The convergence of this discretization leads to the well-posedness of the problem.

Keywords

Richards equation / Porous media / Euler’s implicit scheme / Finite element discretization / Parabolic variational inequality

Cite this article

Download citation ▾
Christine Bernardi, Adel Blouza, Linda El Alaoui. The rain on underground porous media Part I: Analysis of a richards model. Chinese Annals of Mathematics, Series B, 2013, 34(2): 193-212 DOI:10.1007/s11401-013-0766-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alt H W, Luckhaus S. Quasilinear elliptic-parabolic differential equations. Math. Z., 1983, 183: 311-341

[2]

Alt H W, Luckhaus S, Visintin A. On nonstationary flow through porous media. Ann. Mat. Pura Appl., 1984, 136: 303-316

[3]

Bernardi, C., El Alaoui, L. and Mghazli, Z., A posteriori analysis of a space and time discretization of a nonlinear model for the flow in variably saturated porous media, submitted.

[4]

Berninger H. Domain decomposition methods for elliptic problems with jumping nonlinearities and application to the Richards equation, 2007, Berlin, Germany: Freie Universität

[5]

Brezzi F, Hager W W, Raviart P A. Error estimates for the finite element solution to variational inequalities. II. Mixed methods. Numer. Math., 1978, 31: 1-16

[6]

Fabrié P, Gallouët T. Modelling wells in porous media flows. Math. Models Methods Appl. Sci., 2000, 10: 673-709

[7]

Gabbouhy M. Analyse mathématique et simulation numérique des phénom`enes d’écoulement et de transport en milieux poreux non saturés. Application `a la région du Gharb, 2000, Kénitra, Morocco: University Ibn Tofail

[8]

Girault V, Raviart P A. Finite Element Approximation of the Navier-Stokes Equations, 1979, Berlin, New York: Springer-Verlag

[9]

Girault V, Raviart P A. Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms, 1986, Berlin: Springer-Verlag

[10]

Glowinski R, Lions J L, Trémolières R. Analyse numérique des inéquations variationnelles. 2. Applications aux phénom`enes stationnaires et d’évolution, Collection “Méthodes Mathématiques de l’Informatique” 5, 1976, Paris: Dunod

[11]

Lions, J. L. and Magenes, E., Problèmes aux limites non homogènes et applications, Vol. I, Dunod, Paris, 1968.

[12]

Nochetto R H, Verdi C. Approximation of degenerate parabolic problems using numerical integration. SIAM J. Numer. Anal., 1988, 25: 784-814

[13]

Radu F, Pop I S, Knabner P. Order of convergence estimates for an Euler implicit, mixed finite element discretization of Richards’ equation. SIAM J. Numer. Anal., 2004, 42: 1452-1478

[14]

Rajagopal K R. On a hierarchy of approximate models for flows of incompressible fluids through porous solid. Math. Models Methods Appl. Sci., 2007, 17: 215-252

[15]

Richards L A. Capillary conduction of liquids through porous mediums. Physics, 1931, 1: 318-333

[16]

Schneid E, Knabner P, Radu F. A priori error estimates for a mixed finite element discretization of the Richards’ equation. Numer. Math., 2004, 98: 353-370

[17]

Sochala, P. and Ern, A., Numerical methods for subsurface flows and coupling with runoff, to appear.

[18]

Sochala P, Ern A, Piperno S. Mass conservative BDF-discontinuous Galerkin/explicit finite volume schemes for coupling subsurface and overland flows. Comput. Methods Appl. Mech. Engrg., 2009, 198: 2122-2136

[19]

Woodward C S, Dawson C N. Analysis of expanded mixed finite element methods for a nonlinear parabolic equation modeling flow into variably saturated porous media. SIAM J. Numer. Anal., 2000, 37: 701-724

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/