Periodic homogenization for inner boundary conditions with equi-valued surfaces: the unfolding approach

Doina Cioranescu , Alain Damlamian , Tatsien Li

Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (2) : 213 -236.

PDF
Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (2) : 213 -236. DOI: 10.1007/s11401-013-0765-0
Article

Periodic homogenization for inner boundary conditions with equi-valued surfaces: the unfolding approach

Author information +
History +
PDF

Abstract

Making use of the periodic unfolding method, the authors give an elementary proof for the periodic homogenization of the elastic torsion problem of an infinite — dimensional rod with a multiply-connected cross section as well as for the general electroconductivity problem in the presence of many perfect conductors (arising in resistivity well-logging). Both problems fall into the general setting of equi-valued surfaces with corresponding assigned total fluxes. The unfolding method also gives a general corrector result for these problems.

Keywords

Periodic homogenization / Elastic torsion / Equi-valued surfaces / Resistivity well-logging / Periodic unfolding method

Cite this article

Download citation ▾
Doina Cioranescu, Alain Damlamian, Tatsien Li. Periodic homogenization for inner boundary conditions with equi-valued surfaces: the unfolding approach. Chinese Annals of Mathematics, Series B, 2013, 34(2): 213-236 DOI:10.1007/s11401-013-0765-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bellieud M. Torsion effects in elastic composites with high contrast. SIAM J. Math. Anal., 2009, 41(6): 2514-2553

[2]

Braides A, Garroni A. Homogenization of nonlinear periodic media with stiff and soft inclusions. Math. Models Methods Appl. Sci., 1995, 5(4): 543-564

[3]

Briane M. Homogenization of the torsion problem and the Neumann problem in nonregular periodically perforated domains. Math. Models Methods Appl. Sci., 1997, 7(6): 847-870

[4]

Cioranescu D, Damlamian A, Griso G. Periodic unfolding and homogenization. C. R. Acad. Sci. Paris, Série 1, 2002, 335: 99-104

[5]

Cioranescu D, Damlamian A, Griso G. The periodic unfolding method in homogenization. SIAM J. Math. Anal., 2008, 40(4): 1585-1620

[6]

Cioranescu D, Damlamian A, Donato P The periodic unfolding method in domains with holes. SIAM J. Math. Anal., 2012, 44(2): 718-760

[7]

Cioranescu D, Paulin J S J. Homogenization in open sets with holes. J. Math. Anal. Appl., 1979, 71: 590-607

[8]

Cioranescu D, Paulin J S J. Homogenization of Reticulated Structures, 1999, New York: Springer-Verlag

[9]

Donato P, Picard C. Convergence of Dirichlet problems for monotone operators in a class of porous media. Ricerche Mat., 2000, 49: 245-268

[10]

Gianni G D M, Murat F. Asymptotic behaviour and correctors for Dirichlet problems in perforated domains with homogeneous monotone operators. Annali Della Scuola Normale Superiore di Pisa-Classe di Scienze, Sér. 4, 1997, 24(2): 239-290

[11]

De Arcangelis R, Gaudiello A, Paderni G. Some cases of homogenization of linearly coercive gradients constrained variational problems. Math. Models Meth. Appl. Sci., 1996, 6: 901-940

[12]

Griso G. Error estimate and unfolding for periodic homogenization. Asymptot. Anal., 2004, 40: 269-286

[13]

Lanchon H. Torsion éastoplastique d’un arbre cylindrique de section simplement ou multiplement connexe. J. Méanique, 1974, 13: 267-320

[14]

Li T T, Tan Y J. Mathematical problems and methods in resistivity well-loggings. Surveys Math. Indust., 1995, 5(3): 133-167

[15]

Li T T, Zheng S M, Tan Y Y, Shen W X. Boundary value problems with equivalued surface and resistivity well-logging, 1998

[16]

Lions J L. Some methods in the mathematical analysis of systems and their control, 1981, Beijing: Science Press

[17]

Murat F, Tartar L. Kohn R V. H-Convergence, Topics in the mathematical modelling of composite materials. Progr. Nonlinear Differential Equations Appl., 1997, Boston: Birkhäser 21-43

[18]

Sanchez-Palencia E. Nonhomogeneous media and vibration theory, 1980, New York: Springer-Verlag

AI Summary AI Mindmap
PDF

141

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/