Increasing powers in a degenerate parabolic logistic equation

José Francisco Rodrigues , Hugo Tavares

Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (2) : 277 -294.

PDF
Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (2) : 277 -294. DOI: 10.1007/s11401-013-0762-3
Article

Increasing powers in a degenerate parabolic logistic equation

Author information +
History +
PDF

Abstract

The purpose of this paper is to study the asymptotic behavior of the positive solutions of the problem $\partial _t u - \Delta u = au - b\left( x \right)u^p in \Omega \times \mathbb{R}^ + , u(0) = u_0 , \left. {u(t)} \right|_{\partial \Omega } = 0,$ as p → + ∞, where Ω is a bounded domain, and b(x) is a nonnegative function. The authors deduce that the limiting configuration solves a parabolic obstacle problem, and afterwards fully describe its long time behavior.

Keywords

Parabolic logistic equation / Obstacle problem / Positive solution / Increasing power / Subsolution and supersolution

Cite this article

Download citation ▾
José Francisco Rodrigues, Hugo Tavares. Increasing powers in a degenerate parabolic logistic equation. Chinese Annals of Mathematics, Series B, 2013, 34(2): 277-294 DOI:10.1007/s11401-013-0762-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lions J L. Quelques Méthodes de Résolution des Problémes aux Limites Nonlinéaires, 1969, Paris: Gauthier-Villars

[2]

Zheng S. Nonlinear evolutions equations, 2004, Boca Raton, FL: Chapmam & Hall/CRC

[3]

Dancer E, Du Y. On a free boundary problem arising from population biology. Indiana Univ. Math. J., 2003, 52: 51-67

[4]

Dancer E, Du Y, Ma L. Asymptotic behavior of positive solutions of some elliptic problems. Pacific Journal of Mathematics, 2003, 210: 215-228

[5]

Dancer E, Du Y, Ma L. A uniqueness theorem for a free boundary problem. Proc. Amer. Math. Soc., 2006, 134: 3223-3230

[6]

Fraile J M, Koch Medina P, López-Gómez J Elliptic eigenvalue problems and unbounded continua of positive solutions of a semilinear elliptic equation. J. Differential Equations, 1996, 127: 295-319

[7]

Du Y, Guo Z. The degenerate logistic model and a singularly mixed boundary blow-up problem. Discrete and Continuous Dyn. Syst., 2006, 14: 1-29

[8]

Boccardo, L. and Murat, F., Increase of power leads to bilateral problems, Composite Media and Homogenization Theory, G. Dal Maso and G. F. Dell’Antonio (eds.), World Scientific, Singapore, 1995, 113–123.

[9]

Dall’Aglio A, Orsina L. On the limit of some nonlinear elliptic equations involving increasing powers. Asymptotic Analysis, 1997, 14: 49-71

[10]

Ladyzenskaja O, Solonnikov V, Uralceva N. Linear and Quasi-linear Equations of Parabolic Type, 1988, Providence, RI: A. M. S.

[11]

Guo Z, Ma L. Asymptotic behavior of positive solutions of some quasilinear elliptic problems. J. London Math. Soc., 2007, 76: 419-437

[12]

Grossi M. Asymptotic behaviour of the Kazdan-Warner solution in the annulus. J. Differential Equations, 2006, 223: 96-111

[13]

Grossi M, Noris B. Positive constrained minimizers for supercritical problems in the ball. Proc. Amer. Math. Soc., 2012, 140: 2141-2154

[14]

Bonheure D, Serra E. Multiple positive radial solutions on annuli for nonlinear Neumann problems with large growth. NoDEA, 2011, 18: 217-235

[15]

Lieberman G. Second Order Parabolic Differential Equations, 1996, Singapore: World Scientific

[16]

Rodrigues J F. On a class of parabolic unilateral problems. Nonlinear Anal., 1986, 10: 1357-1366

AI Summary AI Mindmap
PDF

100

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/