Finite Volume Multilevel Approximation of the Shallow Water Equations

Arthur Bousquet , Martine Marion , Roger Temam

Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (1) : 1 -28.

PDF
Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (1) : 1 -28. DOI: 10.1007/s11401-012-0760-x
Article

Finite Volume Multilevel Approximation of the Shallow Water Equations

Author information +
History +
PDF

Abstract

The authors consider a simple transport equation in one-dimensional space and the linearized shallow water equations in two-dimensional space, and describe and implement a multilevel finite-volume discretization in the context of the utilization of the incremental unknowns. The numerical stability of the method is proved in both cases.

Keywords

Finite-volume methods / Multilevel methods / Shallow water equations / Stability analysis

Cite this article

Download citation ▾
Arthur Bousquet, Martine Marion, Roger Temam. Finite Volume Multilevel Approximation of the Shallow Water Equations. Chinese Annals of Mathematics, Series B, 2013, 34(1): 1-28 DOI:10.1007/s11401-012-0760-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adamy K., Bousquet A., Faure S. A multilevel method for finite-volume discretization of the two-dimensional nonlinear shallow-water equations. Ocean Modelling, 2010, 33: 235-256

[2]

Adamy K., Pham D.. A finite-volume implicit Euler scheme for the linearized shallow water equations: stability and convergence. Numerical Functional Analysis and Optimization, 2006, 27(7–8): 757-783

[3]

Bellanger M.. Traitement du Signal, 2006, Paris: Dunod

[4]

Bousquet, A., Marion, M. and Temam, R., Finite volume multilevel approximation of the shallow water equations II, in preparation.

[5]

Canuto C., Hussaini M. Y., Quarteroni A., Zhang T. A.. Spectral Methods, Evolution to Complex Geometries and Applications to Fluid Dynamics, Scientific Computation, 2007, Berlin: Springer-Verlag

[6]

Chen Q., Shiue M. C., Temam R.. The barotropic mode for the primitive equations, Special issue in memory of David Gottlieb. Journal of Scientific Computing, 2010, 45: 167-199

[7]

Chen Q., Shiue M. C., Temam R., Tribbia J.. Numerical approximation of the inviscid 3D Primitive equations in a limited domain. Math. Mod. and Num. Anal. (M2AN), 2012, 45: 619-646

[8]

Dubois T., Jauberteau F., Temam R.. Dynamic, Multilevel Methods and the Numerical Simulation of Turbulence, 1999, Cambridge: Cambridge University Press

[9]

Dautray R., Lions J. L.. Mathematical analysis and numerical methods for science and technology, 1990, Berlin: Springer-Verlag

[10]

Eymard R., Gallouet T., Herbin R.. Ciarlet P. G., Lions J. L.. Finite volume methods, Handbook of Numerical Analysis, 2002, Amsterdam: North-Holland 713-1020

[11]

Gie G. M., Temam R.. Cell centered finite-volume methods using Taylor series expansion scheme without fictitious domains. International Journal of Numerical Analysis and Modeling, 2010, 7(1): 1-29

[12]

Huang, A. and Temam, R., The linearized 2D inviscid shallow water equations in a rectangle: boundary conditions and well-posedness, to appear.

[13]

Leveque R. J.. Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics, 2002, Cambridge: Cambridge University Press

[14]

Lions J. L., Temam R., Wang S.. Models of the coupled atmosphere and ocean (CAO I). Computational Mechanics Advances, 1993, 1: 5-54

[15]

Lions J. L., Temam R., Wang S.. Numerical analysis of the coupled models of atmosphere and ocean (CAO II). Computational Mechanics Advances, 1993, 1: 55-119

[16]

Lions J. L., Temam R., Wang S.. Splitting up methods and numerical analysis of some multiscale problems. Computational Fluid Dynamics Journal, 1996, 5(2): 157-202

[17]

Marchuk G. I.. Methods of numerical mathematics, 1982 2nd edition New York, Berlin: Springer-Verlag

[18]

Marion M., Temam R.. Nonlinear Galerkin Methods. SIAM J. Num. Anal., 1989, 26: 1139-1157

[19]

Marion M., Temam R.. Ciarlet P. G., Lions J. L.. Navier-Stokes equations, Theory and Approximation, Handbook of Numerical Analysis, 1998, Amsterdam: North-Holland 503-689

[20]

Rousseau A., Temam R., Tribbia J.. The 3D Primitive Equations in the Absence of Viscosity: Boundary Conditions and Well-Posedness in the Linearized Case. J. Math. Pures Appl., 2008, 89(3): 297-319

[21]

Rousseau A., Temam R., Tribbia J.. Temam R. M., Tribbia J. J., Ciarlet P. G.. Boundary value problems for the inviscid primitive equations in limited domains, Computational Methods for the Atmosphere and the Oceans, Handbook of Numerical Analysis, Special Volume, Vol. XIV, 2008, Amsterdam: Elsevier

[22]

Strikwerda J. C.. Finite Difference Schemes and Partial Differential Equations, 2004 2nd edition philadelphia, PA: SIAM

[23]

Temam R.. Inertial manifolds and multigrid methods. SIAM J. Math. Anal., 1990, 21: 154-178

[24]

Temam R., Tribbia J.. Open boundary conditions for the primitive and Boussinesq equations. J. Atmospheric Sciences, 2003, 60: 2647-2660

[25]

Yanenko N. N.. The method of fractional steps, The solution of problems of mathematical physics in several variables, 1971, New York, Heidelberg: Springer-Verlag

AI Summary AI Mindmap
PDF

108

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/