Non-Gaussian Test Models for Prediction and State Estimation with Model Errors

Michal Branicki , Nan Chen , Andrew J. Majda

Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (1) : 29 -64.

PDF
Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (1) : 29 -64. DOI: 10.1007/s11401-012-0759-3
Article

Non-Gaussian Test Models for Prediction and State Estimation with Model Errors

Author information +
History +
PDF

Abstract

Turbulent dynamical systems involve dynamics with both a large dimensional phase space and a large number of positive Lyapunov exponents. Such systems are ubiquitous in applications in contemporary science and engineering where the statistical ensemble prediction and the real time filtering/state estimation are needed despite the underlying complexity of the system. Statistically exactly solvable test models have a crucial role to provide firm mathematical underpinning or new algorithms for vastly more complex scientific phenomena. Here, a class of statistically exactly solvable non-Gaussian test models is introduced, where a generalized Feynman-Kac formulation reduces the exact behavior of conditional statistical moments to the solution to inhomogeneous Fokker-Planck equations modified by linear lower order coupling and source terms. This procedure is applied to a test model with hidden instabilities and is combined with information theory to address two important issues in the contemporary statistical prediction of turbulent dynamical systems: the coarse-grained ensemble prediction in a perfect model and the improving long range forecasting in imperfect models. The models discussed here should be useful for many other applications and algorithms for the real time prediction and the state estimation.

Keywords

Prediction / Model error / Information theory / Feynman-Kac framework / Fokker planck / Turbulent dynamical systems

Cite this article

Download citation ▾
Michal Branicki, Nan Chen, Andrew J. Majda. Non-Gaussian Test Models for Prediction and State Estimation with Model Errors. Chinese Annals of Mathematics, Series B, 2013, 34(1): 29-64 DOI:10.1007/s11401-012-0759-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bensoussan A.. Stochastic Control of Partially Observable Systems, 1992, Cambridge: Cambridge University Press

[2]

Bourlioux A., Majda A. J.. An elementary model for the validation of flamelet approximations in non-premixed turbulent combustion. Combust. Theory Modell., 2000, 4(2): 189-210

[3]

Branicki M., Gershgorin B., Majda A. J.. Filtering skill for turbulent signals for a suite of nonlinear and linear Kalman filters. J. Comp. Phys., 2012, 231: 1462-1498

[4]

Branicki, M. and Majda, A. J., Fundamental limitations of polynomial chaos for uncertainty quantification in systems with intermittent instabilities, Comm. Math. Sci., 11(1), 2012, in press.

[5]

Branicki M., Majda A. J.. Quantifying uncertainty for predictions with model error in non-Gaussian models with intermittency. Nonlinearity, 2012, 25: 2543-2578

[6]

Cover T. A., Thomas J. A.. Elements of Information Theory, 2006 2nd ed. Hoboken: Wiley-Interscience

[7]

Gardiner C.. Stochastic Methods: A Handbook for the Natural and Social Sciences, 2010 4th ed. Berlin: Springer

[8]

Gershgorin B., Harlim J., Majda A. J.. Improving filtering and prediction of spatially extended turbulent systems with model errors through stochastic parameter estimation. J. Comp. Phys., 2010, 229: 32-57

[9]

Gershgorin B., Harlim J., Majda A. J.. Test models for improving filtering with model errors through stochastic parameter estimation. J. Comp. Phys., 2010, 229: 1-31

[10]

Gershgorin B., Majda A. J.. A test model for fluctuation-dissipation theorems with time-periodic statistics. Physica D, 2010, 239: 1741-1757

[11]

Gershgorin B., Majda A. J.. Quantifying uncertainty for climate change and long range forecasting scenarios with model errors. Part I: Gaussian models. J. Climate, 2012, 25: 4523-4548

[12]

Gershgorin B., Majda A. J.. A nonlinear test model for filtering slow-fast systems. Comm. Math. Sci., 2008, 6: 611-649

[13]

Gershgorin B., Majda A. J.. Filtering a nonlinear slow-fast system with strong fast forcing. Comm. Math. Sci., 2009, 8: 67-92

[14]

Gershgorin B., Majda A. J.. Filtering a statistically exactly solvable test model for turbulent tracers from partial observations. J. Comp. Phys., 2011, 230: 1602-1638

[15]

Harlim J., Majda A. J.. Filtering turbulent sparsely observed geophysical flows. Mon. Wea. Rev., 2010, 138(4): 1050-1083

[16]

Hersh R.. Random evolutions: a survey of results and problems. Rocky Mountain J. Math., 1974, 4(3): 443-477

[17]

Iserles A.. A First Course in the Numerical Analysis of Differential Equations, 1996, Cambridge: Cambridge University Press

[18]

Kleeman R.. Information theory and dynamical system predictability. Entropy, 2011, 13: 612-649

[19]

LeVeque, R., Numerical Methods for Conservation Laws, ETH Lectures in Mathematics Series, Birkhauser-Verlag, 1990.

[20]

Liptser R. S., Shiryaev A. N.. Statistics of random process, 2001 2nd ed. New York: Springer-Verlag

[21]

Majda A., Kramer P.. Simplified models for turbulent diffusion: Theory, numerical modeling, and physical phenomena. Phys. Reports, 1999, 314(4): 237-257

[22]

Majda A. J.. Challenges in climate science and contemporary applied mathematics. Comm. Pure Appl. Math., 2012, 65(7): 920-948

[23]

Majda A. J., Abramov R., Gershgorin B.. High skill in low frequency climate response through fluctuation dissipation theorems despite structural instability. Proc. Natl. Acad. Sci. USA, 2010, 107(2): 581-586

[24]

Majda A. J., Abramov R. V., Grote M. J.. Information theory and stochastics for multiscale nonlinear systems, CRM Monograph Series, vol. 25, 2005, Providence: Americal Mathematical Society

[25]

Majda A. J., Branicki M.. Lessons in uncertainty quantification for turbulent dynamical systems. Discrete Cont. Dyn. Systems, 2012, 32(9): 3133-3231

[26]

Majda A. J., Franzke C., Crommelin D.. Normal forms for reduced stochastic climate models. Proc. Natl. Acad. Sci., 2009, 106(10): 3649-3653

[27]

Majda A. J., Franzke C., Fischer A., Crommelin D. T.. Distinct metastable atmospheric regimes despite nearly Gaussian statistics: A paradigm model. Proc. Natl. Acad. Sci., 2006, 103(22): 8309-8314

[28]

Majda A. J., Gershgorin B.. Quantifying uncertainty in climage change science through empirical information theory. Proc. Natl. Acad. Sci., 2010, 107(34): 14958-14963

[29]

Majda A. J., Gershgorin B.. Improving model fidelity and sensitivity for complex systems through empirical information theory. Proc. Natl. Acad. Sci., 2011, 108(5): 10044-10049

[30]

Majda A. J., Gershgorin B.. Link between statistical equilibrium fidelity and forecasting skill for complex systems with model error. Proc. Natl. Acad. Sci., 2011, 108(31): 12599-12604

[31]

Majda A. J., Kleeman R., Cai D.. A mathematical framework for predictability through relative entropy. Methods Appl. Anal., 2002, 9(3): 425-444

[32]

Majda A. J., Wang X.. Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows, 2006, Cambridge: Cambridge University Press

[33]

Majda, A. J. and Gershgorin, B., Elementary models for turbulent diffusion with complex physical features: eddy diffusivity, spectrum, and intermittency, Phil. Trans. Roy. Soc., 2011, In press.

[34]

Majda A. J., Harlim J.. Filtering Complex Turbulent Systems, 2012, Cambridge: Cambridge University Press

[35]

Majda A. J., Harlim J., Gershgorin B.. Mathematical strategies for filtering turbulent dynamical systems. Discrete Cont. Dyn. Systems, 2010, 27: 441-486

[36]

Risken H.. The Fokker-Planck Equation: Methods of Solutions and Applications, 1989 2nd ed. Berlin: Springer-Verlag

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/