Asymptotic Analysis in a Gas-Solid Combustion Model with Pattern Formation

Claude-Michel Brauner , Lina Hu , Luca Lorenzi

Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (1) : 65 -88.

PDF
Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (1) : 65 -88. DOI: 10.1007/s11401-012-0758-4
Article

Asymptotic Analysis in a Gas-Solid Combustion Model with Pattern Formation

Author information +
History +
PDF

Abstract

The authors consider a free interface problem which stems from a gas-solid model in combustion with pattern formation. A third-order, fully nonlinear, self-consistent equation for the flame front is derived. Asymptotic methods reveal that the interface approaches a solution to the Kuramoto-Sivashinsky equation. Numerical results which illustrate the dynamics are presented.

Keywords

Asymptotics / Free interface / Kuramoto-Sivashinsky equation / Pseudodifferential operator / Spectral method

Cite this article

Download citation ▾
Claude-Michel Brauner, Lina Hu, Luca Lorenzi. Asymptotic Analysis in a Gas-Solid Combustion Model with Pattern Formation. Chinese Annals of Mathematics, Series B, 2013, 34(1): 65-88 DOI:10.1007/s11401-012-0758-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Berestycki H., Brauner C.-M., Clavin P. Modélisation de la Combustion, Images des Mathématiques, Special Issue, 1996, Paris: CNRS

[2]

Brauner C.-M., Frankel M. L., Hulshof J. On the κ-θ model of cellular flames: existence in the large and asymptotics. Discrete Contin. Dyn. Syst. Ser. S, 2008, 1: 27-39

[3]

Brauner C.-M., Frankel M. L., Hulshof J., Sivashinsky G. I.. Weakly nonlinear asymptotics of the κ-θ model of cellular flames: the Q-S equation. Interfaces Free Bound., 2005, 7: 131-146

[4]

Brauner C.-M., Hulshof J., Lorenzi L.. Stability of the travelling wave in a 2D weakly nonlinear Stefan problem. Kinetic Related Models, 2009, 2: 109-134

[5]

Brauner C.-M., Hulshof J., Lorenzi L.. Rigorous derivation of the Kuramoto-Sivashinsky equation in a 2D weakly nonlinear Stefan problem. Interfaces Free Bound., 2011, 13: 73-103

[6]

Brauner C.-M., Hulshof J., Lorenzi L., Sivashinsky G. I.. A fully nonlinear equation for the flame front in a quasi-steady combustion model. Discrete Contin. Dyn. Syst. Ser. A, 2010, 27: 1415-1446

[7]

Brauner C.-M., Lorenzi L., Sivashinsky G. I., Xu C.-J.. On a strongly damped wave equation for the flame front. Chin. Ann. Math., 2010, 31B(6): 819-840

[8]

Brauner C.-M., Lunardi A.. Instabilities in a two-dimensional combustion model with free boundary. Arch. Ration. Mech. Anal., 2000, 154: 157-182

[9]

Buckmaster, J. D. and Ludford, G. S. S., Theory of Laminar Flames, Cambridge, New York, 1982.

[10]

Eckhaus W.. Asymptotic Analysis of Singular Perturbations, 1979, Amsterdam, New York: North-Holland

[11]

Haase M.. The Functional Calculus for Sectorial Operators, 2006, Basel: Birkhäuser-Verlag

[12]

Hyman J. M., Nicolaenko B.. The Kuramoto-Sivashinsky equation: a bridge between PDEs and dynamical systems. Phys. D, 1986, 18: 113-126

[13]

Kagan L., Sivashinsky G. I.. Pattern formation in flame spread over thin solid fuels. Combust. Theor. Model., 2008, 12: 269-281

[14]

Lions J.-L.. Perturbations Singulières dans les Problèmes aux Limites et en Contrôle Optimal, 1970, Berlin, New York: Springer-Verlag

[15]

Lorenzi L.. Regularity and analyticity in a two-dimensional combustion model. Adv. Diff. Eq., 2002, 7: 1343-1376

[16]

Lorenzi L.. A free boundary problem stemmed from combustion theory. I, existence, uniqueness and regularity results. J. Math. Anal. Appl., 2002, 274: 505-535

[17]

Lorenzi L.. A free boundary problem stemmed from combustion theory. II, stability, instability and bifurcation results. J. Math. Anal. Appl., 2002, 275: 131-160

[18]

Lorenzi L.. Bifurcation of codimension two in a combustion model. Adv. Math. Sci. Appl., 2004, 14: 483-512

[19]

Lorenzi L., Lunardi A.. Stability in a two-dimensional free boundary combustion model. Nonlinear Anal, 2003, 53: 227-276

[20]

Lorenzi L., Lunardi A.. Erratum: “Stability in a two-dimensional free boundary combustion model. Nonlinear Anal., 2003, 53(6): 859-860

[21]

Lunardi A.. Analytic Semigroups and Optimal Regularity in Parabolic Problems, 1995, Basel: Birkhäuser

[22]

Matkowsky B. J., Sivashinsky G. I.. An asymptotic derivation of two models in flame theory associated with the constant density approximation. SIAM J. Appl. Math., 1979, 37: 686-699

[23]

Sivashinsky G. I.. On flame propagation under conditions of stoichiometry. SIAM J. Appl. Math., 1980, 39: 67-82

[24]

Sivashinsky G. I.. Instabilities, pattern formation and turbulence in flames. Ann. Rev. Fluid Mech., 1983, 15: 179-199

[25]

Temam R.. Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 1997 2nd edition New York: Springer-Verlag

[26]

Zik O., Moses E.. Fingering instability in combustion: an extended view. Phys. Rev. E, 1999, 60: 518-531

AI Summary AI Mindmap
PDF

207

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/