Sharp Interpolation Inequalities on the Sphere: New Methods and Consequences

Jean Dolbeault , Maria J. Esteban , Michal Kowalczyk , Michael Loss

Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (1) : 99 -112.

PDF
Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (1) : 99 -112. DOI: 10.1007/s11401-012-0756-6
Article

Sharp Interpolation Inequalities on the Sphere: New Methods and Consequences

Author information +
History +
PDF

Abstract

This paper is devoted to various considerations on a family of sharp interpolation inequalities on the sphere, which in dimension greater than 1 interpolate between Poincaré, logarithmic Sobolev and critical Sobolev (Onofri in dimension two) inequalities. The connection between optimal constants and spectral properties of the Laplace-Beltrami operator on the sphere is emphasized. The authors address a series of related observations and give proofs based on symmetrization and the ultraspherical setting.

Keywords

Sobolev inequality / Interpolation / Gagliardo-Nirenberg inequality / Logarithmic Sobolev inequality / Heat equation

Cite this article

Download citation ▾
Jean Dolbeault, Maria J. Esteban, Michal Kowalczyk, Michael Loss. Sharp Interpolation Inequalities on the Sphere: New Methods and Consequences. Chinese Annals of Mathematics, Series B, 2013, 34(1): 99-112 DOI:10.1007/s11401-012-0756-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arnold A., Bartier J. P., Dolbeault J.. Interpolation between logarithmic Sobolev and Poincaré inequalities. Commun. Math. Sci., 2007, 5: 971-979

[2]

Arnold A., Dolbeault J.. Refined convex Sobolev inequalities. J. Funct. Anal., 2005, 225: 337-351

[3]

Arnold A., Markowich P., Toscani G. On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations. Comm. Part. Diff. Eq., 2001, 26: 43-100

[4]

Aubin T.. Probl`emes isopérimétriques et espaces de Sobolev. J. Diff. Geom., 1976, 11: 573-598

[5]

Baernstein A., Taylor B. A.. Spherical rearrangements, subharmonic functions, and *-functions in n-space. Duke Math. J., 1976, 43: 245-268

[6]

Bakry D.. Une suite d’inégalités remarquables pour les opérateurs ultrasphériques. C. R. Acad. Sci. Paris Sér. I Math., 1994, 318: 161-164

[7]

Bakry D., Bentaleb A.. Extension of Bochner-Lichnérowicz formula on spheres. Ann. Fac. Sci. Toulouse Math., 2005, 14(6): 161-183

[8]

Bakry D., émery M.. Hypercontractivité de semi-groupes de diffusion. C. R. Acad. Sci. Paris Sér. I Math., 1984, 299: 775-778

[9]

Bakry D., émery M.. Diffusions hypercontractives, séminaire de probabilités, XIX, 1983/1984, 1985, Berlin: Springer-Verlag 177-206

[10]

Beckner W.. A generalized Poincaré inequality for Gaussian measures. Proc. Amer. Math. Soc., 1989, 105: 397-400

[11]

Beckner W.. Sobolev inequalities, the Poisson semigroup, and analysis on the sphere Sn. Proc. Nat. Acad. Sci. U. S. A., 1992, 89: 4816-4819

[12]

Beckner W.. Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality. Ann. of Math., 1993, 138(2): 213-242

[13]

Bentaleb A.. Développement de la moyenne d’une fonction pour la mesure ultrasphérique. C. R. Acad. Sci. Paris Sér. I Math., 1993, 317: 781-784

[14]

Bentaleb A.. Inégalité de Sobolev pour l’opérateur ultrasphérique. C. R. Acad. Sci. Paris Sér. I Math., 1993, 317: 187-190

[15]

Bentaleb A.. Sur l’hypercontractivité des semi-groupes ultrasphériques, séminaire de probabilités, XXXIII, 1999, Berlin: Springer-Verlag 410-414

[16]

Bentaleb A.. L’hypercontractivité des semi-groupes de Gegenbauer multidimensionnels-famille d’inégalit és sur le cercle. Int. J. Math. Game Theory Algebra, 2002, 12: 259-273

[17]

Bentaleb A.. Sur les fonctions extrémales des inégalités de Sobolev des opérateurs de diffusion, séminaire de probabilités, XXXVI, 2003, Berlin: Springer-Verlag 230-250

[18]

Bentaleb A., Fahlaoui S.. Integral inequalities related to the Tchebychev semigroup. Semigroup Forum, 2009, 79: 473-479

[19]

Bentaleb A., Fahlaoui S.. A family of integral inequalities on the circle S1. Proc. Japan Acad. Ser. A Math. Sci., 2010, 86: 55-59

[20]

Berger M., Gauduchon P., Mazet E.. Le spectre d’une variété riemannienne, 1971, Berlin: Springer-Verlag

[21]

Bidaut-Véron M. F., Véron L.. Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations. Invent. Math., 1991, 106: 489-539

[22]

Bolley F., Gentil I.. Phi-entropy inequalities and Fokker-Planck equations. Progress in Analysis and Its Applications, 2010, Hackensack, NJ: World Sci. Publ. 463-469

[23]

Bolley F., Gentil I.. Phi-entropy inequalities for diffusion semigroups. J. Math. Pures Appl., 2010, 93(9): 449-473

[24]

Brock F.. A general rearrangement inequality à la Hardy-Littlewood. J. Inequal. Appl., 2000, 5: 309-320

[25]

Carlen E., Loss M.. Computing symmetries, the logarithmic HLS inequality and Onofri’s inequality on Sn. Geom. Funct. Anal., 1992, 2: 90-104

[26]

Chafaï D.. Entropies, convexity, and functional inequalities: on φ-entropies and φ-Sobolev inequalities. J. Math. Kyoto Univ., 2004, 44: 325-363

[27]

Funk P.. Beiträge zur Theorie der Kegelfunktionen. Math. Ann., 1915, 77: 136-162

[28]

Gidas B., Spruck J.. Global and local behavior of positive solutions of nonlinear elliptic equations. Comm. Pure Appl. Math., 1981, 34: 525-598

[29]

Gross L.. Logarithmic Sobolev inequalities. Amer. J. Math., 1975, 97: 1061-1083

[30]

Hebey E.. Nonlinear analysis on manifolds: Sobolev spaces and inequalities, 1999, New York: New York University Courant Institute of Mathematical Sciences

[31]

Hecke E.. Über orthogonal-invariante Integralgleichungen. Math. Ann., 1917, 78: 398-404

[32]

Latała R., Oleszkiewicz K.. Between Sobolev and Poincaré, Geometric aspects of functional analysis, 2000, Berlin: Springer-Verlag 147-168

[33]

Lieb E. H.. Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities. Ann. of Math., 1983, 118(2): 349-374

[34]

Mueller C. E., Weissler F. B.. Hypercontractivity for the heat semigroup for ultraspherical polynomials and on the n-sphere. J. Funct. Anal., 1982, 48: 252-283

[35]

Rosen G.. Minimum value for c in the Sobolev inequality φ 3∥ ≤ c∇φ∥3. SIAM J. Appl. Math., 1971, 21: 30-32

[36]

Talenti G.. Best constant in Sobolev inequality. Ann. Mat. Pura Appl., 1976, 110(4): 353-372

[37]

Weissler F. B.. Logarithmic Sobolev inequalities and hypercontractive estimates on the circle. J. Funct. Anal., 1980, 37: 218-234

AI Summary AI Mindmap
PDF

100

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/