MsFEM à la Crouzeix-Raviart for Highly Oscillatory Elliptic Problems

Claude Le Bris , Frédéric Legoll , Alexei Lozinski

Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (1) : 113 -138.

PDF
Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (1) : 113 -138. DOI: 10.1007/s11401-012-0755-7
Article

MsFEM à la Crouzeix-Raviart for Highly Oscillatory Elliptic Problems

Author information +
History +
PDF

Abstract

We introduce and analyze a multiscale finite element type method (MsFEM) in the vein of the classical Crouzeix-Raviart finite element method that is specifically adapted for highly oscillatory elliptic problems. We illustrate numerically the efficiency of the approach and compare it with several variants of MsFEM.

Keywords

Homogenization / Finite elements / Galerkin methods / Highly oscillatory PDE

Cite this article

Download citation ▾
Claude Le Bris, Frédéric Legoll, Alexei Lozinski. MsFEM à la Crouzeix-Raviart for Highly Oscillatory Elliptic Problems. Chinese Annals of Mathematics, Series B, 2013, 34(1): 113-138 DOI:10.1007/s11401-012-0755-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aarnes J.. On the use of a mixed multiscale finite element method for greater flexibility and increased speed or improved accuracy in reservoir simulation. SIAM MMS, 2004, 2(3): 421-439

[2]

Aarnes J., Heimsund B. O.. Engquist B., Lötstedt P., Runborg O.. Multiscale discontinuous Galerkin methods for elliptic problems with multiple scales. Multiscale Methods in Science and Engineering, 2005, Berlin: Springer-Verlag 1-20

[3]

Abdulle A.. Multiscale method based on discontinuous Galerkin methods for homogenization problems. C. R. Math. Acad. Sci. Paris, 2008, 346(1–2): 97-102

[4]

Abdulle A.. Discontinuous Galerkin finite element heterogeneous multiscale method for elliptic problems with multiple scales. Math. Comp., 2012, 81(278): 687-713

[5]

Arbogast T.. Implementation of a locally conservative numerical subgrid upscaling scheme for two-phase Darcy flow. Comp. Geosc., 2002, 6(3–4): 453-481

[6]

Arbogast T.. Graham I. G., Hou T. Y., Lakkis O., Scheichl R.. Mixed multiscale methods for heterogeneous elliptic problems, Numerical Analysis of Multiscale Problems, 2011, Berlin: Springer-Verlag 243-283

[7]

Arbogast T., Boyd K. J.. Subgrid upscaling and mixed multiscale finite elements. SIAM J. Num. Anal., 2006, 44(3): 1150-1171

[8]

Bensoussan A., Lions J. L., Papanicolaou G.. Asymptotic analysis for periodic structures, 1978, Amsterdam, New York: North-Holland Publishing Co.

[9]

Bergh J., Löfström J.. Interpolation spaces. An introduction, 1976, Berlin: Springer-Verlag

[10]

Brenner S. C., Scott L. R.. The mathematical theory of finite element methods, 2008 3rd edition New York: Springer-Verlag

[11]

Chen Z., Cui M., Savchuk T. Y.. The multiscale finite element method with nonconforming elements for elliptic homogenization problems. SIAM MMS, 2008, 7(2): 517-538

[12]

Chen Z., Hou T. Y.. A mixed multiscale finite element method for elliptic problems with oscillating coefficients. Math. Comp., 2003, 72(242): 541-576

[13]

Cioranescu D., Donato P.. An introduction to homogenization, 1999, New York: The Clarendon Press, Oxford University Press

[14]

Crouzeix M., Raviart P. A.. Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. RAIRO, 1973, 7(3): 33-75

[15]

Efendiev Y., Hou T. Y.. Multiscale Finite Element Method: Theory and Applications, 2009, New York: Springer-Verlag

[16]

Efendiev Y. R., Hou T. Y., Wu X. H.. Convergence of a nonconforming multiscale finite element method. SIAM J. Num. Anal., 2000, 37(3): 888-910

[17]

Engquist B., Souganidis P.. Asymptotic and Numerical Homogenization, Acta Numerica, 2008, Cambridge: Cambridge University Press

[18]

Ern A., Guermond J. L.. Theory and Practice of Finite Elements, Applied Mathematical Sciences, 2004, Berlin: Springer-Verlag

[19]

Gilbarg D., Trudinger N. S.. Elliptic partial differential equations of second order, Classics in Mathematics, 2001, Berlin: Springer-Verlag

[20]

Gloria A.. An analytical framework for numerical homogenization. Part II: Windowing and oversampling. SIAM MMS, 2008, 7(1): 274-293

[21]

Hou T. Y., Wu X. H.. A multiscale finite element method for elliptic problems in composite materials and porous media. Journal of Computational Physics, 1997, 134(1): 169-189

[22]

Hou T. Y., Wu X. H., Cai Z.. Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Math. Comp., 1999, 68(227): 913-943

[23]

Hou T. Y., Wu X. H., Zhang Y.. Removing the cell resonance error in the multiscale finite element method via a Petrov-Galerkin formulation. Communications in Mathematical Sciences, 2004, 2(2): 185-205

[24]

Jikov V. V., Kozlov S. M., Oleinik O. A.. Homogenization of differential operators and integral functionals, 1994, Berlin: Springer-Verlag

[25]

Le Bris, C., Legoll, F. and Lozinski, A., A MsFEM type approach for perforated domains, in preparation.

[26]

Le Bris, C., Legoll, F. and Thomines, F., Multiscale Finite Element approach for “weakly” random problems and related issues. http://arxiv.org/abs/1111.1524

[27]

Malqvist, A. and Peterseim, D., Localization of elliptic multiscale problems. http://arxiv.org/abs/1110.0692

[28]

Owhadi H., Zhang L.. Localized bases for finite dimensional homogenization approximations with non-separated scales and high-contrast. SIAM MMS, 2011, 9: 1373-1398

[29]

Rannacher R., Turek S.. Simple nonconforming quadrilateral Stokes element. Num. Meth. Part. Diff. Eqs., 1982, 8: 97-111

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/