Exact Synchronization for a Coupled System of Wave Equations with Dirichlet Boundary Controls

Tatsien Li , Bopeng Rao

Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (1) : 139 -160.

PDF
Chinese Annals of Mathematics, Series B ›› 2013, Vol. 34 ›› Issue (1) : 139 -160. DOI: 10.1007/s11401-012-0754-8
Article

Exact Synchronization for a Coupled System of Wave Equations with Dirichlet Boundary Controls

Author information +
History +
PDF

Abstract

In this paper, the exact synchronization for a coupled system of wave equations with Dirichlet boundary controls and some related concepts are introduced. By means of the exact null controllability of a reduced coupled system, under certain conditions of compatibility, the exact synchronization, the exact synchronization by groups, and the exact null controllability and synchronization by groups are all realized by suitable boundary controls.

Keywords

Exact null controllability / Exact synchronization / Exact synchronization by groups

Cite this article

Download citation ▾
Tatsien Li, Bopeng Rao. Exact Synchronization for a Coupled System of Wave Equations with Dirichlet Boundary Controls. Chinese Annals of Mathematics, Series B, 2013, 34(1): 139-160 DOI:10.1007/s11401-012-0754-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alabau-Boussouira F.. A two-level energy method for indirect boundary observability and controllability of weakly coupled hyperbolic systems. SIAM J. Control Optim., 2003, 42: 871-906

[2]

Fujisaka H., Yamada T.. Stability theory of synchronized motion in coupled-oscillator systems. Progress of Theoretical Physics, 1983, 69: 32-47

[3]

Garofalo N., Lin F.. Unique continuation for elliptic operators: a geometric-variational approach. Comm. Pure Appl. Math., 1987, 40: 347-366

[4]

Huygens C.. Horologium Oscillatorium Sive de Motu Pendulorum ad Horologia Aptato Demonstrationes Geometricae, 1673, Parisiis: Apud F. Muguet

[5]

Komornik V., Loreti P.. Fourier Series in Control Theory, 2005, New York: Springer-Verlag

[6]

Krabs W.. On Moment Theory and Controllability of One-Dimensional Vibrating Systems and Heating Processes, 1992, Berlin: Springer-Verlag

[7]

Yu L.. Exact boundary controllability for a kind of second-order quasilinear hyperbolic systems and its applications. Math. Meth. Appl. Sci., 2010, 33: 273-286

[8]

Li T. T., Rao B. P.. Strong (weak) exact controllability and strong (weak) exact observability for quasilinear hyperbolic systems. Chin. Ann. Math., 2010, 31B(5): 723-742

[9]

Li T. T., Rao B. P.. Asymptotic controllability for linear hyperbolic systems. Asymptotic Analysis, 2011, 72: 169-187

[10]

Lions J. L.. Controlabilité Exacte, Perturbations et Stabilisation de Systèms Distribués, Vol. 1, 1988, Paris: Masson

[11]

Liu Z., Rao B. P.. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete Contin. Dyn. Syst., 2009, 23: 399-414

[12]

Loreti P., Rao B. P.. Optimal energy decay rate for partially damped systems by spectral compensation. SIAM J. Control Optim., 2006, 45: 1612-1632

[13]

Mehrenberger M.. Observability of coupled systems. Acta Math. Hungar., 2004, 103: 321-348

[14]

Wang K.. Exact boundary controllability for a kind of second-order quasilinear hyperbolic systems. Chin. Ann. Math., 2011, 32B(6): 803-822

[15]

Young R.. An Introduction to Nonharmonic Fourier Series, 1980, New York, London: Academic Press

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/