A criterion of normality concerning holomorphic functions whose derivative omit a function II

Qiaoyu Chen , Xiaojun Liu

Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (6) : 815 -822.

PDF
Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (6) : 815 -822. DOI: 10.1007/s11401-012-0751-y
Article

A criterion of normality concerning holomorphic functions whose derivative omit a function II

Author information +
History +
PDF

Abstract

The authors discuss the normality concerning holomorphic functions and get the following result. Let F be a family of functions holomorphic on a domain D ⊂ ℂ, all of whose zeros have multiplicity at least k, where k ≥ 2 is an integer. Let h(z) ≢ 0 and be a meromorphic function on D. Assume that the following two conditions hold for every fF: $\begin{gathered} (a)f(z) = 0 \Rightarrow |f^{(k)} (z)| < |h(z)|. \hfill \\ (b)f^{(k)} (z) \ne h(z). \hfill \\ \end{gathered} $ Then F is normal on D.

Keywords

Normal family / Meromorphic functions / Omitted function

Cite this article

Download citation ▾
Qiaoyu Chen, Xiaojun Liu. A criterion of normality concerning holomorphic functions whose derivative omit a function II. Chinese Annals of Mathematics, Series B, 2012, 33(6): 815-822 DOI:10.1007/s11401-012-0751-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Clunie J., Hayman W. K.. The spherical derivative of integral and meromorphic functions. Comm. Math. Helvet., 1966, 40: 117-148

[2]

Liu X. J., Ye Y. S.. A criterion of normality concerning holomorphic functions whose derivative omits a function. Chin. Ann. Math., 2011, 32B(5): 699-710

[3]

Pang X. C.. Bloch’s principle and normal criterion. Sci. China Ser. A, 1989, 32: 782-791

[4]

Pang X. C.. Shared values and normal families. Analysis, 2002, 22: 175-182

[5]

Pang X. C., Yang D. G., Zalcman L.. Normal families of meromorphic functions whose derivative omit a function. Comput. Methods Funct., 2002, 2: 257-265

[6]

Pang X. C., Zalcman L.. Normal families and shared values. Bull. London Math. Soc., 2000, 32: 325-331

[7]

Pang X. C., Zalcman L.. Normal families of meromorphic functions with multiple zeros and poles. Israel J. Math., 2003, 136: 1-9

[8]

Zalcman L.. A heuristic principle in complex function theory. Amer. Math. Monthly, 1975, 82: 813-817

[9]

Zalcman L.. Normal families: new perspectives. Bull. Amer. Math. Soc. (N.S.), 1998, 35: 215-230

AI Summary AI Mindmap
PDF

108

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/