On univalence of the power deformation $z(\frac{{f(z)}}{z})^c $

Yong Chan Kim , Toshiyuki Sugawa

Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (6) : 823 -830.

PDF
Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (6) : 823 -830. DOI: 10.1007/s11401-012-0750-z
Article

On univalence of the power deformation $z(\frac{{f(z)}}{z})^c $

Author information +
History +
PDF

Abstract

The authors mainly concern the set U f of c ∈ ℂ such that the power deformation $z(\frac{{f(z)}}{z})^c $ is univalent in the unit disk |z| < 1 for a given analytic univalent function f(z) = z + a 2 z 2 + … in the unit disk. It is shown that U f is a compact, polynomially convex subset of the complex plane ℂ unless f is the identity function. In particular, the interior of U f is simply connected. This fact enables us to apply various versions of the λ-lemma for the holomorphic family $z(\frac{{f(z)}}{z})^c $ of injections parametrized over the interior of U f. The necessary or sufficient conditions for U f to contain 0 or 1 as an interior point are also given.

Keywords

Univalent function / Holomorphic motion / Quasiconformal extension / Grunsky inequality / Univalence criterion

Cite this article

Download citation ▾
Yong Chan Kim, Toshiyuki Sugawa. On univalence of the power deformation $z(\frac{{f(z)}}{z})^c $. Chinese Annals of Mathematics, Series B, 2012, 33(6): 823-830 DOI:10.1007/s11401-012-0750-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Astala K., Martin G. J.. Holomorphic motions, papers on analysis. Rep. Univ. Jyväskylä Dep. Math. Stat., 2001, 83: 27-40

[2]

Becker J.. Löwnersche differentialgleichung und quasikonform fortsetzbare schlichte funktionen. J. Reine Angew. Math., 1972, 255: 23-43

[3]

Conway J. B.. A Course in Functional Analysis, 1985, New York: Springer-Verlag

[4]

Kim Y. C., Sugawa T.. On power deformations of univalent functions. Monatsh. Math., 2012, 167: 231-240

[5]

Mañé R., Sad P., Sullivan D.. On dynamics of rational maps. Ann. Sci. École Norm. Sup., 1983, 16: 193-217

[6]

Milin I. M.. Univalent Functions and Orthonormal Systems, 1977, Providence, RI: A. M. S.

[7]

Pommerenke C.. Univalent Functions, 1975, Göttingen: Vandenhoeck & Ruprecht

[8]

Prawitz H.. Über mittelwerte analytischer funktionen. Ark. Mat. Astronom. Fys., 1927, 20: 1-12

[9]

Sugawa T.. On the norm of the pre-Schwarzian derivatives of strongly starlike functions. Ann. Univ. Mariae Curie-Sk_lodowska, Sect. A, 1998, 52: 149-157

[10]

Žuravlev I. V.. Univalent functions and Teichmüller spaces. Soviet Math. Dokl., 1980, 21: 252-255

AI Summary AI Mindmap
PDF

143

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/