On the fourth moment of coefficients of symmetric square L-function

Huixue Lao

Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (6) : 877 -888.

PDF
Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (6) : 877 -888. DOI: 10.1007/s11401-012-0746-8
Article

On the fourth moment of coefficients of symmetric square L-function

Author information +
History +
PDF

Abstract

Let f(z) be a holomorphic Hecke eigencuspform of weight k for the full modular group. Let λ f(n) be the nth normalized Fourier coefficient of f(z). Suppose that L(sym2 f, s) is the symmetric square L-function associated with f(z), and $\lambda _{sym^2 f} (n)$ (n) denotes the nth coefficient L(sym2 f, s). In this paper, it is proved that $\sum\limits_{n \leqslant x} {\lambda _{sym^2 f}^4 (n)} = xP2(\log x) + O(x^{\frac{{79}}{{81}} + \varepsilon } ),$, where P 2(t) is a polynomial in t of degree 2. Similarly, it is obtained that $\sum\limits_{n \leqslant x} {\lambda _f^4 (n^2 )} = x\tilde P2(\log x) + O(x^{\frac{{79}}{{81}} + \varepsilon } ),$, where $\tilde P_2 (t)$ is a polynomial in t of degree 2.

Keywords

Fourier coefficient of cusp form / Symmetric power L-function / Rankin-Selberg L-function

Cite this article

Download citation ▾
Huixue Lao. On the fourth moment of coefficients of symmetric square L-function. Chinese Annals of Mathematics, Series B, 2012, 33(6): 877-888 DOI:10.1007/s11401-012-0746-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cogdell J., Michel P.. On the complex moments of symmetric power L-functions at s = 1. Int. Math. Res. Not., 2004, 31: 1561-1617

[2]

Deligne P., de La Conjecture W.. Inst. Hautes Etudes Sci. Pul. Math., 1974, 43: 273-307

[3]

Fomenko, O. M., On the behavior of automorphic L-functions at the center of the critical strip (in Russian), Anal. Teor. Chiseli Teor. Funkts. Part, 17, Zap. Nauchn. Sem. POMI, 276, 2001, 300–311; translation in J. Math. Sci. (N. Y.), 118(1), 2003, 4910–4917.

[4]

Fomenko O. M.. Mean value theorems for automorphic L-functions. St. Petersburg Math. J., 2008, 19: 853-866

[5]

Gelbart S., Jacquet H.. A relation between automorphic representations of GL(2) and GL(3). Ann. Sci. École Norm. Sup., 1978, 11: 471-552.

[6]

Ivić A.. On sums of Fourier coefficients of cusp form. Proc. IV International Conference “Modern Problems of Number Theory and its Applications”, Tula, 2001, 2002, Tula: Pedagogical Univ. of Tula 92-97

[7]

Iwaniec H.. Topics in Classical Automorphic Forms, 1997, Providence, RI: A. M. S.

[8]

Iwaniec H., Kowalski E.. Analytic Number Theory, 2004, Providence, RI: A. M. S.

[9]

Jacquet H., Shalika J. A.. On Euler products and the classification of automorphic representations I. Amer. J. Math., 1981, 103(3): 499-558

[10]

Jacquet H., Shalika J. A.. On Euler products and the classification of automorphic forms II. Amer. J. Math., 1981, 103(4): 777-815

[11]

Kim H.. Functoriality for the exterior square of GL4 and symmetric fourth of GL2 (with Appendix 1 by D. Ramakrishnan, Appendix 2 by H. Kim and P. Sarnak). J. Amer. Math. Soc., 2003, 16: 139-183

[12]

Kim H., Shahidi F.. Functorial products for GL2×GL3 and functorial symmetric cube for GL2 (with an appendix by C. J. Bushnell and G. Henniart). Ann. of Math., 2002, 155: 837-893

[13]

Kim H., Shahidi F.. Cuspidality of symmetric power with applications. Duke Math. J., 2002, 112: 177-197

[14]

Lao H. X., Sankaranarayanan A.. The average behavior of Fourier coefficients of cusp forms over sparse sequences. Proc. Amer. Math. Soc., 2009, 137: 2557-2565

[15]

Lao H. X.. Mean square estimates for coefficients of symmetric power L-functions. Acta Appl. Math., 2010, 110: 1127-1136

[16]

Lau Y. K., G. S.. Sums of Fourier coefficients of cusp forms. Quart. J. Math. (Oxford), 2011, 62(3): 687-716

[17]

Lau Y. K., Wu J.. A density theorem on automorphic L-functions and some applications. Trans. Amer. Math. Soc., 2006, 359: 441-472

[18]

G. S.. The sixth and eighth moment of Fourier coefficients of cusp forms. J. Number Theory, 2009, 129(11): 2790-2880

[19]

G. S.. On higher moments of Fourier coefficients of holomorphic cusp forms. Canadian J. Math., 2011, 63: 634-647

[20]

Moreno C. J., Shahidi F.. The fourth moment of the Ramanujan τ-function. Math. Ann., 1983, 266: 233-239

[21]

Pan C. D., Pan C. B.. Fundamentals of Analytic Number Theory (in Chinese), 1991, Beijing: Science Press

[22]

Rankin R. A.. Contributions to the theory of. Math. Proc. Cambridge Phil. Soc., 1939, 35: 357-372

[23]

Rankin R. A.. Sums of cusp form coefficients. Automorphic Forms and Analytic Number Theory, Montreal, PQ, 1989, 1990, Montreal, QC: Univ. Montréal 115-121

[24]

Rudnick Z., Sarnak P.. Zeros of principal L-functions and random matrix theory. Duke Math. J., 1996, 81(2): 269-232

[25]

Sankaranarayanan A.. Fundamental properties of symmetric square L-functions I. Illinois J. Math., 2002, 46: 23-43

[26]

Sankaranarayanan A.. On a sum involving Fourier coefficients of cusp forms. Lithuanian Math. J., 2006, 46: 459-474

[27]

Selberg A.. Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist. Arch. Math. Naturvid, 1940, 43: 47-50

[28]

Shahidi F.. On certain L-functions. Amer. J. Math., 1981, 103(2): 297-355

[29]

Shahidi F.. Third symmetric power L-functions for GL(2). Compos. Math., 1989, 70: 245-273

AI Summary AI Mindmap
PDF

317

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/