Statistical structures on metric path spaces

Mircea Crasmareanu , Cristina-Elena Hreţcanu

Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (6) : 889 -902.

PDF
Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (6) : 889 -902. DOI: 10.1007/s11401-012-0745-9
Article

Statistical structures on metric path spaces

Author information +
History +
PDF

Abstract

The authors extend the notion of statistical structure from Riemannian geometry to the general framework of path spaces endowed with a nonlinear connection and a generalized metric. Two particular cases of statistical data are defined. The existence and uniqueness of a nonlinear connection corresponding to these classes is proved. Two Koszul tensors are introduced in accordance with the Riemannian approach. As applications, the authors treat the Finslerian (α, β)-metrics and the Beil metrics used in relativity and field theories while the support Riemannian metric is the Fisher-Rao metric of a statistical model.

Keywords

Semispray / Nonlinear connection / Metric path space / Statistical structure / Skewness / Koszul tensors / (α, β)-metric / Beil metric / Rayleigh statistical structure / Fisher-Rao metric / Statistical model

Cite this article

Download citation ▾
Mircea Crasmareanu, Cristina-Elena Hreţcanu. Statistical structures on metric path spaces. Chinese Annals of Mathematics, Series B, 2012, 33(6): 889-902 DOI:10.1007/s11401-012-0745-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Amari S.-I., Nagaoka H.. Methods of Information Geometry, 2000, Providence, RI: A. M. S.

[2]

Arwini K. A., Dodson C. T. J. Doig A. J., Sampson W. W., Scharcanski J. Information Geometry, Near Randomness and Near Independence, 2008, Berlin: Springer-Verlag

[3]

Beil R. G.. Electrodynamics from a metric. Internat. J. Theoret. Phys., 1987, 26(2): 189-197

[4]

Beil R. G.. New class of Finsler metrics. Internat. J. Theoret. Phys., 1989, 28(6): 659-667

[5]

Bucataru I.. Metric nonlinear connections. Diff. Geom. Appl., 2007, 25(3): 335-343

[6]

Bucataru I., Constantinescu O., Dahl M. F.. A geometric setting for systems of ordinary differential equations. Int. J. Geom. Meth. Mod. Phys., 2011, 8(6): 1291-1327

[7]

Bullo F., Lewis A. D.. Geometric Control of Mechanical Systems. Modeling, Analysis, and Design for Simple Mechanical Control Systems, 2005, New York: Springer-Verlag

[8]

Lauritzen S. L. Amari S.-I. Statistical manifolds, Differential Geometry in Statistical Inference, 1987, Hayward, CA: Institute of Mathematical Statistics 163-216

[9]

Matsumoto M.. Antonelli P. L.. Finsler geometry in the 20th-century, 2003, Dordrecht: Kluwer Academic Publishers 557-966

[10]

Miron R., Tavakol R.. Geometry of space-time and generalized Lagrange spaces. Publ. Math. Debrecen, 1994, 44(1–2): 167-174

[11]

Shen Z.. Differential Geometry of Spray and Finsler Spaces, 2001, Dordrecht: Kluwer Academic Publishers

[12]

Shen Z.. Riemann-Finsler geometry with applications to information geometry. Chin. Ann. Math., 2006, 27B(1): 73-94

[13]

Shima H.. The Geometry of Hessian Structures, 2007, Hackensack: World Scientific Publishing

[14]

http://en.wikipedia.org/wiki/Normal_distribution

AI Summary AI Mindmap
PDF

193

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/