Parseval frame wavelet multipliers in L 2(ℝ d)

Zhongyan Li , Xianliang Shi

Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (6) : 949 -960.

PDF
Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (6) : 949 -960. DOI: 10.1007/s11401-012-0739-7
Article

Parseval frame wavelet multipliers in L 2(ℝ d)

Author information +
History +
PDF

Abstract

Let A be a d × d real expansive matrix. An A-dilation Parseval frame wavelet is a function ψL 2(ℝ d), such that the set $\left\{ {\left| {\det A} \right|^{\frac{n}{2}} \psi \left( {A^n t - \ell } \right):n \in \mathbb{Z},\ell \in \mathbb{Z}^d } \right\}$ forms a Parseval frame for L 2(ℝ d). A measurable function f is called an A-dilation Parseval frame wavelet multiplier if the inverse Fourier transform of dψ⌃ is an A-dilation Parseval frame wavelet whenever ψ is an A-dilation Parseval frame wavelet, where ψ⌃ denotes the Fourier transform of ψ. In this paper, the authors completely characterize all A-dilation Parseval frame wavelet multipliers for any integral expansive matrix A with |det(A)| = 2. As an application, the path-connectivity of the set of all A-dilation Parseval frame wavelets with a frame MRA in L 2(ℝ d) is discussed.

Keywords

Parseval frame wavelet / Wavelet multiplier / Frame multiresolution analysis

Cite this article

Download citation ▾
Zhongyan Li, Xianliang Shi. Parseval frame wavelet multipliers in L 2(ℝ d). Chinese Annals of Mathematics, Series B, 2012, 33(6): 949-960 DOI:10.1007/s11401-012-0739-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bakic D., Krishtal I., Wilson E. N.. Parseval frame wavelets with E n (2)-dialtions. Appl. Comput. Harmon. Anal., 2005, 19: 386-431

[2]

Benedetto J., Li S.. The theory of multiresolution analysis frames and applications to filter banks. Appl. Comp. Harm. Anal., 1998, 5: 389-427

[3]

Bownik M.. On characterizations of multiwavelets in L 2(ℝn). Proc. Amer. Math. Soc., 2001, 129(11): 3265-3274

[4]

Chui G. C. K.. An Introduction to Wavelets, 1992, New York: Academic Press

[5]

Cohen A., Daubechies I.. Non-separable bidimensional wavelet bases. Rev. Mat. Iberoamericana, 1993, 9: 51-137

[6]

Dai X., Diao Y., Gu Q.. Frame wavelets with frame set support in the frequency domain. Illinois J. Math., 2004, 48: 539-558

[7]

Dai, X. and Larson, D. R., Wandering vectors for unitary systems and orthogonal wavelets, Mem. Amer. Math. Soc., 34(640), 1998.

[8]

Dai X., Larson D. R., Speegle D. M.. Wavelet sets in ℝn. J. Fourier Anal. Appl., 1997, 3(2): 451-456

[9]

Daubechies I.. Ten Lecture on Wavelets. CBMS Lecture Notes, 1992, Philadelphia: SIAM

[10]

Gröchenig K., Madych W. R.. Multiresolution analysis, Haar bases, and self-similar tilings of ℝn. IEEE Trans. Inf. Th., 1992, 38(2): 556-568

[11]

Gu Q., Han D.. On multiresolution analysis (MRA) wavelets in ℝn. J. Fourier Anal. Appl., 2000, 6(4): 437-447

[12]

Hernández E., Wang X., Weiss G.. Smoothing minimally-supported frequency (MSF) wavelets: part II. J. Fourier Anal. Appl., 1997, 3: 23-41

[13]

Hernándes E., Weiss G.. A First Course on Wavelets, 1996, Boca Raton, FL: CRC Press

[14]

Lagarias J. C., Wang Y.. Haar type orthonormal wavelet basis in ℝ2. J. Fourier Anal. Appl., 1995, 2(1): 1-14

[15]

Li Y.. On a class of bidimensional nonseparable wavelet multipliers. J. Math. Anal. Appl., 2002, 270: 543-560

[16]

Li Z., Dai X., Diao Y. The path-connectivity of MRA wavelets in L 2(ℝd). Illinois J. Math., 2010, 54: 601-620

[17]

Li Z., Dai X., Diao Y. Multipliers, phases and connectivity of wavelets in L 2(ℝ2). J Fourier Anal. Appl., 2010, 16: 155-176

[18]

Liang, R., Some properties of wavelets, Ph. D. Dissertation, University of North Carolina at Charlotte, 1998.

[19]

Meyer Y.. Wavelets and Operators, Cambridge Studies in Advanced Mathematics, 1992, Cambridge: Cambridge University Press

[20]

Paluszyhski M., Sikid H., Weiss G. Generalized low pass filters and mra frame wavelets. J. Geom. Anal., 2001, 11(2): 311-342

[21]

Speegle D.. The s-elementary wavelets are path-connected. Proc. Amer. Math. Soc., 1999, 127(1): 223-233

[22]

Wutam C.. Basic properties of wavelets. J. Fourier Anal. Appl., 1998, 4(4): 575-594

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/