Determinant solutions to a (3+1)-dimensional generalized KP equation with variable coefficients

Alrazi Abdeljabbar , Wenxiu Ma , Ahmet Yildirim

Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (5) : 641 -650.

PDF
Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (5) : 641 -650. DOI: 10.1007/s11401-012-0738-8
Article

Determinant solutions to a (3+1)-dimensional generalized KP equation with variable coefficients

Author information +
History +
PDF

Abstract

A system of linear conditions is presented for Wronskian and Grammian solutions to a (3+1)-dimensional generalized vcKP equation. The formulations of these solutions require a constraint on variable coefficients.

Keywords

Hirota bilinear form / Wronskian solution / Grammian solution

Cite this article

Download citation ▾
Alrazi Abdeljabbar, Wenxiu Ma, Ahmet Yildirim. Determinant solutions to a (3+1)-dimensional generalized KP equation with variable coefficients. Chinese Annals of Mathematics, Series B, 2012, 33(5): 641-650 DOI:10.1007/s11401-012-0738-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hirota R.. The direct method in soliton theory, Cambridge Tracts in Maohematics, Vol. 155, 2004, Cambridge: Cambridge University Press

[2]

Hietarinta J.. Hirota’s bilinear method and soliton solutions. Phys. AUC, 2005, 15(1): 31-37

[3]

Ma W. X., Huang T. W., Zhang Y.. A multiple exp-function method for nonlinear differential equations and its application. Phys. Scr., 2010, 82: 065003

[4]

Ma W. X., Fan E. G.. Linear superposition principle applying to Hirota bilinear equations. Comput. Math. Appl., 2011, 61: 950-959

[5]

Ma W. X., Zhang Y., Tang Y. N. Hiota bilinear equations with linear subspaces of solutions. Appl. Math. Comput., 2012, 218: 7174-7183

[6]

Satsuma J.. A Wronskian representation of N-soliton solutions of nonlinear evolution equations. J. Phys. Soc. Jpn., 1979, 46: 359-360

[7]

Matveev V. B.. Positon-positon and soliton-positon collisions: KdV case. Phys. Lett. A, 1992, 166: 200-212

[8]

Ma W. X.. Complexiton solutions to the Korteweg-de Vries equation. Phys. Lett. A, 2002, 301: 35-44

[9]

Ma W. X., Maruno K.. Complexiton solutions of the Toda lattice equation. Physica A, 2004, 343: 219-237

[10]

Ma W. X.. Soliton, positon and negaton solutions to a Schrödinger self-consistent source equation. J. Phys. Soc. Jpn., 2003, 72: 3017-3019

[11]

Ma W. X.. Complexiton solutions of the Korteweg-de Vries equation with self-consistent sources, Chaos. Solitons Fractals, 2005, 26: 1453-1458

[12]

Nakamura A.. A bilinear N-soliton formula for the KP equation. J. Phys. Soc. Jpn., 1989, 58: 412-422

[13]

Hirota R.. Soliton solutions to the BKP equations — I. The Pfaffian technique. J. Phys. Soc. Jpn., 1989, 58: 2285-2296

[14]

Ma W. X., Abdeljabbar A., Assad M. G.. Wronskian and Grammian solutions to a (3+1)-dimensional generalized KP equation. Appl. Math. Comput., 2011, 217: 10016-10023

[15]

Wazwaz A. M.. Multiple-soliton solutions for a (3+1)-dimensional generalized KP equation. Commun. Nonlinear Sci. Numer. Simu., 2012, 17: 491-495

[16]

Ma W. X., Abdeljabbar A.. A bilinear Bäcklund transformation of a (3+1)-dimensional generalized KP equation. Appl. Math. Lett., 2012, 25: 1500-1504

[17]

Ma W. X., Pekcan A.. Uniqueness of the Kadomtsev-Petviashvili and Boussinesq equations. Z. Naturforsch. A., 2011, 66: 377-382

[18]

You F. C., Xia T. C., Chen D. Y.. Decomposition of the generalized KP, cKP and mKP and their exact solutions. Phys. Lett. A, 2008, 372: 3184-3194

[19]

Hirota R.. A new form of Bäcklund transformations and its relation to the inverse scattering problem. Progr. Theoret. Phys., 1974, 52: 1498-1512

AI Summary AI Mindmap
PDF

95

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/