On regularity of incompressible fluid with shear dependent viscosity

Hongjun Yuan , Qiu Meng

Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (5) : 673 -680.

PDF
Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (5) : 673 -680. DOI: 10.1007/s11401-012-0735-y
Article

On regularity of incompressible fluid with shear dependent viscosity

Author information +
History +
PDF

Abstract

The authors consider a non-Newtonian fluid governed by equations with p-structure in a cubic domain. A fluid is said to be shear thinning (or pseudo-plastic) if 1 < p < 2, and shear thickening (or dilatant) if p > 2. The case p > 2 is considered in this paper. To improve the regularity results obtained by Crispo, it is shown that the secondorder derivatives of the velocity and the first-order derivative of the pressure belong to suitable spaces, by appealing to anisotropic Sobolev embeddings.

Keywords

Non-Newtonian fluid / Regularity / Shear dependent viscosity

Cite this article

Download citation ▾
Hongjun Yuan, Qiu Meng. On regularity of incompressible fluid with shear dependent viscosity. Chinese Annals of Mathematics, Series B, 2012, 33(5): 673-680 DOI:10.1007/s11401-012-0735-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Astarita G., Marucci G.. Principles of Non-Newtonian Fluid Mechanics, 1974, London: McGraw-Hill

[2]

Beirão da Veiga H.. On the regularity of flows with Ladyzhenskaya shear dependent viscosity and slip and non-slip boundary conditions. Comm. Pure Appl. Math., 2005, 58: 552-577

[3]

Beirão da Veiga H.. Navier-stokes equations with shear thickening viscosity. Regularity up to the boundary. J. Math. Fluid Mech., 2009, 11: 233-257

[4]

Beirão da Veiga H.. Navier-stokes equations with shear thinning viscosity. Regularity up to the boundary. J. Math. Fluid. Mech., 2009, 11: 258-273

[5]

Berselli L. C., Iliescu T., Layton W. J.. Mathematics of Large Eddy Simulation of Turbulent Flows, Scientific Computation, 2006, Berlin: Springer-Verlag

[6]

Cottet G. H., Jiroveanu D., Michaux B.. Vorticity dynamics and turbulence models of large eddy simulations. M2AN Math. Model Numer. Anal., 2003, 37: 187-207

[7]

Crispo F.. On the regularity of shear thickening viscous fluids. Chin. Ann. Math., 2009, 30B(3): 273-280

[8]

Galdi G. P. Galdi G. P., Robertson A. M., Rannacher R. Mathematical problems in classical and non-Newtonian fluid mechanics, Hemodynamical Flows: Modeling, Analysis and Simulation (Oberwolfach Seminars), 2007, Basel: Birkhaeuser-Verlag

[9]

Germano M., Piomelli U., Moin P. A dynamic subgrid-scale eddy viscosity model. Phys. Fluids, 1991, A(3): 1760-1765

[10]

Hughes T. J. R., Mazzei L., Oberai A. A.. The multiscale formulation of large eddy simulation: decay of homogeneous isotropic turbulence. Phys. Fluids, 2001, 13: 505-512

[11]

Hughes T. J. R., Wells G. N., Wray A. A.. Energy transfers and spectral eddy viscosity in large-eddy simulations of homogeneous isotropic turbulence: comparison of dynamic Smagorinsky and multiscale models over a range of discretizations. Phys. Fluids, 2004, 16(11): 4044-4052

[12]

Lesieur M., Metais O., Comte P.. Large-eddy Simulations of Turbulence, 2005, New York: Cambridge University Press

[13]

Lions J. L.. Quelques Méthodes de Résolution des Problèmes aux Limites Non-linéaires, 1969, Paris: Dunod

[14]

Málek J., Neč J., Rokyta M. Weak and measure-valued solutions to evolutionary PDEs. Applied Mathematics and Mathematical Computation, 1996, London: Chapman and Hall

[15]

Málek, J., Nečas, J. and Ružička, M., On the non-Newtonian incompressible fluids, Math. Models Methods Appl. Sci., 1993, 35–63.

[16]

Parés C.. Existence, uniqueness and regularity of solutions of the equations of a turbulence model for incompressible fluids. Appl. Analysis, 1992, 43: 245-296

[17]

Rajagopal K. R.. Galdi G. P., Nečas J.. Mechanics of non-Newtonian fluids, Recent Developments in Theoretical Fluid Mechanics. Pitman Research Notes in Mathematics Series, 291, 1993, Harlow: Longman 129-162

[18]

Smagorinsky J. S.. General circulation experiments with the primitive equations. I. The basic experiment. Mon. Weather Rev., 1963, 91: 99-164

[19]

Troisi M.. Teoremi di inclusione per spazi di Sobolev non isotropi. Ricerche di Matematica, 1969, 18: 3-24

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/