Regular submanifolds in conformal space ℚ p n

Changxiong Nie , Chuanxi Wu

Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (5) : 695 -714.

PDF
Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (5) : 695 -714. DOI: 10.1007/s11401-012-0733-0
Article

Regular submanifolds in conformal space ℚ p n

Author information +
History +
PDF

Abstract

The authors study the regular submanifolds in the conformal space ℚ p n and introduce the submanifold theory in the conformal space ℚ p n. The first variation formula of the Willmore volume functional of pseudo-Riemannian submanifolds in the conformal space ℚ p n is given. Finally, the conformal isotropic submanifolds in the conformal space ℚ p n are classified.

Keywords

Conformal space / Conformal invariants / Willmore submanifolds / Conformal isotropic

Cite this article

Download citation ▾
Changxiong Nie, Chuanxi Wu. Regular submanifolds in conformal space ℚ p n. Chinese Annals of Mathematics, Series B, 2012, 33(5): 695-714 DOI:10.1007/s11401-012-0733-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alias L. J., Palmer B.. Zero mean curvature surfaces with non-negative curvature in flat Lorentzian 4-spaces. Proc. R. Soc. London, 1999, 455A: 631-636

[2]

Blaschke W.. Vorlesunggen über Differential Geometrie III, 1929, Berlin: Springer-Verlag

[3]

Cahen M., Kerbrat Y.. Domaines symetriques des quacriques projectives. J. Math. Pures Appl., 1983, 62: 327-348

[4]

Li H. Z., Liu H. L., Wang C. P. Moebius isoparametric hypersurfaces in \mathbb{S} n+1 with two distinct principal curvatures. Acta Math. Sin. (Engl. Ser.), 2002, 18: 437-446

[5]

Li H. Z., Wang C. P.. Surfaces with vanishing Moebius form in \mathbb{S} n. Acta Math. Sin. (Engl. Ser.), 2003, 19: 671-678

[6]

Liu H. L., Wang C. P., Zhao G. S.. Moebius isotropic submanifolds in S n. Tôhoku Math. J., 2001, 53: 553-569

[7]

Nie C. X., Li T. Z., He Y. J. Conformal isoparametric hypersurfaces with two distinct conformal principal curvatures in conformal space. Sci. China Ser. A, 2010, 53(4): 953-965

[8]

Nie C. X., Ma X., Wang C. P.. Conformal CMC-surfaces in Lorentzian space forms. Chin. Ann. Math., 2007, 28B(3): 299-310

[9]

Nie C. X., Wu C. X.. Space-like hypersurfaces with parallel conformal second fundamental forms in the conformal space (in Chinese). Acta Math. Sinica, 2008, 51(4): 685-692

[10]

Nie C. X., Wu C. X.. Classification of type I time-like hyperspaces with parallel conformal second fundamental forms in the conformal space (in Chinese). Acta Math. Sinica, 2011, 54(1): 125-136

[11]

O’Neill B.. Semi-Riemannian Geometry with Applications to Relativity, 1983, New York: Academic Press

[12]

Wang C. P.. Surfaces in Möbius geometry. Nagoya Math. J., 1992, 125: 53-72

[13]

Wang C. P.. Moebius geometry of submanifolds in \mathbb{S} n. Manuscripta Math., 1998, 96: 517-534

[14]

Willmore T. J.. Surfaces in conformal geometry. Ann. Global Anal. Geom., 2000, 18: 255-264

[15]

Schoen R. M., Yau S. T.. Lectures on Differential Geometry, 1994, Cambridge: International Press

AI Summary AI Mindmap
PDF

313

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/