Rigid properties of quasi-almost-Einstein metrics

Linfeng Wang

Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (5) : 715 -736.

PDF
Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (5) : 715 -736. DOI: 10.1007/s11401-012-0732-1
Article

Rigid properties of quasi-almost-Einstein metrics

Author information +
History +
PDF

Abstract

In this paper, quasi-almost-Einstein metrics on complete manifolds are studied. Two examples are given and several formulas are established. With the help of these formulas, the author proves rigid results on compact or noncompact manifolds, in which some basic tools, such as the weighted volume comparison theorem and the weak maximum principle at infinity, are used. A lower bound estimate for the scalar curvature is also obtained.

Keywords

Quasi-almost-Einstein metric / Potential function / Gradient estimate / Rigid property

Cite this article

Download citation ▾
Linfeng Wang. Rigid properties of quasi-almost-Einstein metrics. Chinese Annals of Mathematics, Series B, 2012, 33(5): 715-736 DOI:10.1007/s11401-012-0732-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Qian Z. M.. Estimates for weight volumes and applications. J. Math. Oxford Ser., 1987, 48: 235-242.

[2]

Lott J.. Some geometric properties of the Bakry-Émery Ricci tensor. Comment. Math. Helv., 2003, 78: 865-883

[3]

Li X. D.. Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds. J. Math., Pures Appl., 2005, 84(10): 1295-1361

[4]

Wang L. F.. The upper bound of the L µ 2 spectrum. Ann. Glob. Anal. Geom., 2010, 37(4): 393-402

[5]

Case J., Shu Y. J., Wei G.. Rigidity of quasi-Einstein metrics. Diff. Geom. Appl., 2011, 29(1): 93-100

[6]

Kim D. S., Kim Y. H.. Compact Einstein warped product spaces with nonpositive scalar curvature. Proc. Amer. Math. Soc., 2003, 131: 2573-2576

[7]

Wang L. F.. Rigid properties of quasi-Einstein metrics. Proc. Amer. Math. Soc., 2011, 139: 3679-3689

[8]

Wang L. F.. On noncompact τ-quasi-Einstein metrics. Pacific J. Math., 2011, 254(2): 449-464

[9]

Wang L. F.. On L f p -spectrum and τ-quasi-Einstein metric. J. Math. Anal. Appl., 2012, 389: 195-204

[10]

Wang, L. F., Diameter estimate for compact quasi-Einstein metrics, Mathematische Zeitschrift, to appear. DOI: 10.1007/s00209-012-1031-y

[11]

Maschler G.. Special Kähler-Ricci potentials and Ricci solitons. Ann. Glob. Anal. Geom., 2008, 34: 367-380

[12]

Pigola, S., Rigoli, M. and Setti, A. G., Ricci almost solitons, Ann. Scuola Norm. Sup. Pisa Cl. Sci., to appear.

[13]

Cao H. D., Zhu X. P.. A complete proof of the Poincaré and geometrization conjectures-application of the Hamilton-Perelman theory of the Ricci flow. Asian J. Math., 2006, 10: 165-492

[14]

Hamilton R. S.. The formation of singularities in the Ricci flow. Surveys in Differential Geometry, 1995, Combridge, MA: International Press 7-136

[15]

Chen B. L.. Strong uniqueness of the Ricci flow. J. Diff. Geom., 2009, 82(2): 363-382

[16]

Zhang S. J.. On a sharp volume estimate for gradient Ricci solitons with scalar curvature bounded below. Acta Math. Sin., 2011, 27(5): 871-882

[17]

Cao H. D., Zhou D.. On complete gradient shrinking solitons. J. Diff. Geom., 2010, 85(2): 175-186

[18]

Cao H. D.. Geometry of complete gradient shrinking solitons. Geom. and Anal., Vol. I, Adv. Lect. Math., 2011, 17: 227-246

[19]

Peterson P., Wylie W.. Rigidity of gradient Ricci solitons. Pacific J.Math., 2009, 241: 329-345

[20]

Warner F. W.. Foundations of Differentiable Manifolds and Lie Groups, 1983, New York: Springer-Verlag

[21]

Ivey T.. Ricci solitons on compact three-manifolds. Diff. Geom. Appl., 1993, 3: 301-307

[22]

Yau S. T.. Harmonic functions on complete Riemannian manifold. Comm. Pure Appl. Math., 1975, 28: 201-208

[23]

Cheng S. Y., Yau S. T.. Differential equations on Riemannian manifolds and there geometric applications. Comm. Pure Appl. Math., 1975, 28: 333-354

[24]

Pigola S., Rigoli M., Setti A. G.. Maximum Principles on Riemannian Manifolds and Applications. Mem. Amer. Math. Soc., 174 (822), 2005, Providence, RI: A. M. S.

[25]

Scheon R., Yau S. T.. Lectures on differential geometry. Conf. Proc., Vol I, 1994, Combridge: International Press

[26]

Pigola S., Rigoli M., Setti A. G.. Remarks on noncompact gradient Ricci solitons. Mathematische Zeitschrift, 2011, 268(3–4): 777-790

[27]

Case J.. On the nonexistence of quasi-Einstein metrics. Pacific J. Math., 2010, 248(2): 277-284

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/