The average errors for hermite interpolation on the 1-Fold integrated wiener space

Guiqiao Xu , Jingrui Ning

Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (5) : 737 -750.

PDF
Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (5) : 737 -750. DOI: 10.1007/s11401-012-0731-2
Article

The average errors for hermite interpolation on the 1-Fold integrated wiener space

Author information +
History +
PDF

Abstract

For the weighted approximation in L p-norm, the authors determine the weakly asymptotic order for the p-average errors of the sequence of Hermite interpolation based on the Chebyshev nodes on the 1-fold integrated Wiener space. By this result, it is known that in the sense of information-based complexity, if permissible information functionals are Hermite data, then the p-average errors of this sequence are weakly equivalent to those of the corresponding sequence of the minimal p-average radius of nonadaptive information.

Keywords

Chebyshev polynomial / Hermite interpolation / Weighted L p-norm / 1-Fold integrated Wiener space

Cite this article

Download citation ▾
Guiqiao Xu, Jingrui Ning. The average errors for hermite interpolation on the 1-Fold integrated wiener space. Chinese Annals of Mathematics, Series B, 2012, 33(5): 737-750 DOI:10.1007/s11401-012-0731-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Klaus R.. Average-case Analysis of Numerical Problems, 2000, New York: Springer-Verlag

[2]

Erdös P., Feldheim E.. Sur le mode de convergence pour 1′interpolation de Lagrange. C. R. Acad Sci. Paris Sėr I. Math., 1936, 203: 913-915

[3]

Fejér L.. Lagrangesche interpolation und zugehörigen konjugierten punkte. Math. Ann., 1932, 106: 1-55

[4]

Xu G. Q.. The simultaneous approximation average errors for interpolation polynomials on the 1-fold integrated Wiener space (in Chinese). Sci. Sin. Math., 2011, 41(5): 407-426

[5]

Xu G. Q.. The average errors for Lagrange interpolation and Hermite-Fejér interpolation on the Wiener space (in Chinese). Acta Math. Sinica, 2007, 50(6): 1281-1296

[6]

Xu G. Q., Du Y. F.. The average errors for quasi-Hermite-Fejér interpolation on the Wiener space. Sci. China Ser. A, 2010, 53(6): 1841-1852

[7]

Xu, G. Q., The average errors for Lagrange interpolation on the Wiener space, Acta Math. Sin. (Engl. Ser.), DOI:10.1007/s10114-012-0242-9

[8]

Xu G. Q., Du Y. F.. The average errors for Trigonometric polynomial operators on the Brownian bridge measure (in Chinese). Acta Math. Sinica, 2009, 52(3): 523-534

[9]

Varma A. K., Prasad J.. An analogue of a problem of P. Erös and E. Feldheim on L p convergence of interpolatory processes. J. Approx. Theory, 1989, 56: 225-240

AI Summary AI Mindmap
PDF

171

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/