H 2-stabilization of the Isothermal Euler equations: a Lyapunov function approach

Martin Gugat , Günter Leugering , Simona Tamasoiu , Ke Wang

Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (4) : 479 -500.

PDF
Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (4) : 479 -500. DOI: 10.1007/s11401-012-0727-y
Article

H 2-stabilization of the Isothermal Euler equations: a Lyapunov function approach

Author information +
History +
PDF

Abstract

The authors consider the problem of boundary feedback stabilization of the 1D Euler gas dynamics locally around stationary states and prove the exponential stability with respect to the H 2-norm. To this end, an explicit Lyapunov function as a weighted and squared H 2-norm of a small perturbation of the stationary solution is constructed. The authors show that by a suitable choice of the boundary feedback conditions, the H 2-exponential stability of the stationary solution follows. Due to this fact, the system is stabilized over an infinite time interval. Furthermore, exponential estimates for the C 1-norm are derived.

Keywords

Boundary control / Feedback stabilization / Quasilinear hyperbolic system / Balance law / Gas dynamics / Isothermal Euler equations / Exponential stability, Lyapunov function / H 2-norm / Stationary state / Characteristic variable

Cite this article

Download citation ▾
Martin Gugat, Günter Leugering, Simona Tamasoiu, Ke Wang. H 2-stabilization of the Isothermal Euler equations: a Lyapunov function approach. Chinese Annals of Mathematics, Series B, 2012, 33(4): 479-500 DOI:10.1007/s11401-012-0727-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Banach S.. Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales. Fund. Math., 1922, 3: 133-181

[2]

Banda M. K., Herty M., Klar A.. Coupling conditions for gas networks governed by the isothermal Euler equations. Netw. Heterog. Media, 2006, 1: 295-314

[3]

Banda M. K., Herty M., Klar A.. Gas flow in pipeline networks. Netw. Heterog. Media, 2006, 1: 41-56

[4]

Bedjaoui N., Weyer E., Bastin G.. Methods for the localization of a leak in open water channels. Netw. Heterog. Media, 2009, 4: 189-210

[5]

Bressan A.. Hyperbolic Systems of Conservation Laws, 2003, Oxford: Oxford University Press

[6]

Colombo R. M., Guerra G., Herty M., Schleper V.. Optimal control in networks of pipes and canals. SIAM J. Control Optim., 2009, 48: 2032-2050

[7]

Coron J. M.. Control and Nonlinearity, 2007, Providence, RI: American Mathematical Society

[8]

Coron J. M., d’Andréa-Novel B., Bastin G.. A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws. IEEE Trans. Automat. Control, 2007, 52: 2-11

[9]

Coron J. M., d’Andréa-Novel B., Bastin G.. Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems. SIAM J. Control Optim., 2008, 47: 1460-1498

[10]

Dick M., Gugat M., Leugering G.. Classical solutions and feedback stabilization for the gas flow in a sequence of pipes. Netw. Heterog. Media, 2010, 5: 691-709

[11]

Dick M., Gugat M., Leugering G.. A strict H 1-Lyapunov function and feedback stabilization for the isothermal Euler equations with friction. Numer. Algebra Control Optim., 2011, 1: 225-244

[12]

Evans L. C.. Partial Differential Equations, Graduate Studies in Mathematics, 2010, Berkley: American Mathematical Society

[13]

Greenberg J. M., Li T. T.. The effect of boundary damping for the quasilinear wave equation. J. Differential Equations, 1984, 52: 66-75

[14]

Gugat M.. Optimal nodal control of networked hyperbolic systems: evaluation of derivatives. Adv. Model Optim., 2005, 7: 9-37

[15]

Gugat M.. Boundary feedback stabilization by time delay for one-dimensional wave equations. IMA J. Math. Control Inform., 2010, 27: 189-203

[16]

Gugat M., Dick M.. Time-delayed boundary feedback stabilization of the isothermal Euler equations with friction. Math. Control Relat. Fields, 2011, 1: 469-491

[17]

Gugat M., Dick M., Leugering G.. Gas flow in fan-shaped networks: classical solutions and feedback stabilization. SIAM J. Control Optim., 2011, 49: 2101-2117

[18]

Gugat M., Herty M.. Existence of classical solutions and feedback stabilization for the flow in gas networks. ESAIM Control Optim. Calc. Var., 2011, 17: 28-51

[19]

Gugat M., Herty M., Klar A. Well-posedness of networked hyperbolic systems of balance laws. Internat. Ser. Numer. Math., 2012, 160: 123-146

[20]

Gugat M., Herty M., Schleper V.. Flow control in gas networks: exact controllability to a given demand. Math. Methods Appl. Sci., 2011, 34: 745-757

[21]

Gugat, M., Leugering, G., Tamasoiu, S. and Wang, K., Boundary feedback stabilization for second-order quasilinear hyperbolic systems: a strict H 2-Lyapunov function, submitted.

[22]

Jeffrey A.. Quasilinear hyperbolic systems and waves, Reasearch Notes in Mathematics, 1976, London: Pitman Publishing

[23]

Kato T.. The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Rational Mech. Anal., 1975, 58: 181-205

[24]

Li T. T.. Global Classical Solutions for Quasilinear Hyperbolic Systems, 1994, Paris, Milan, Barcelona: Masson and Wiley

[25]

Li T. T.. Controllability and Observability for Quasilinear Hyperbolic Systems, 2010, Springfield, MO: American Institute of Mathematical Sciences

[26]

Osiadacz A., Chaczykowski M.. Comparison of isothermal and non-isothermal transient models, Technical Report Available at Warsaw University of Technology, 1998, Denver, Colorado: Pipeline Simulation Interest Group

[27]

Osiadacz A., Chaczykowski M.. Comparison of isothermal and non-isothermal pipeline gas flow models. Chemical Engineering J., 2001, 81: 41-51

[28]

Qin T.. Global smooth solutions of dissipative boundary value problems for first order quasilinear hyperbolic systems. Chin. Ann. Math., 1985, 6B(3): 289-298

[29]

Slemrod M.. Boundary feedback stabilization for a quasilinear wave equation, Control Theory for Distributed Parameter Systems. Lecture Notes in Control and Information Sciences, 1983, 54: 221-237

[30]

Taylor M.. Partial Differential Equations, Applied Mathematical Sciences, 1996, New York: Springer-Verlag

[31]

Tucsnak M., Weiss G.. Observation and Control for Operator Semigroups, 2009, Basel-Boston-Berlin: Birkhäuser

[32]

Vazquez, R., Coron, J. M., Krstic, M. and Bastin, G., Local exponential H 2 stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping, CDC-ECC, 2011, 1329–1334.

[33]

Wang Z.. Exact controllability for nonautonomous first order quasilinear hyperbolic systems. Chin. Ann. Math., 2006, 27B(6): 643-656

AI Summary AI Mindmap
PDF

99

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/