Local existence of smooth solutions to the FENE dumbbell model
Ge Yang
Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (4) : 501 -520.
Local existence of smooth solutions to the FENE dumbbell model
The author proves the local existence of smooth solutions to the finite extensible nonlinear elasticity (FENE) dumbbell model of polymeric flows in some weighted spaces if the non-dimensional parameter b > 2.
Fokker-Planck equation / FENE model / Degenerate parabolic equations / Regularity
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
Hong, J. X. and Yang, G., On the regularity of solutions to FENE models, preprint. |
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
Liu, H. L. and Shin, J., The Cauchy-Dirichlet problem for the FENE dumbbell model of polymeric flows, Invent. Math., 2012, to appear. DOI: 10.1007/S00222-012-0399-y |
| [23] |
|
| [24] |
|
| [25] |
Masmoudi, N., Global existence of weak solutions to the FENE dumbbell model of polymeric flows, Invent. Math., 2012, to appear. DOI: 10.1007/s00222-012-0399-y |
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
/
| 〈 |
|
〉 |