Local existence of smooth solutions to the FENE dumbbell model

Ge Yang

Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (4) : 501 -520.

PDF
Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (4) : 501 -520. DOI: 10.1007/s11401-012-0726-z
Article

Local existence of smooth solutions to the FENE dumbbell model

Author information +
History +
PDF

Abstract

The author proves the local existence of smooth solutions to the finite extensible nonlinear elasticity (FENE) dumbbell model of polymeric flows in some weighted spaces if the non-dimensional parameter b > 2.

Keywords

Fokker-Planck equation / FENE model / Degenerate parabolic equations / Regularity

Cite this article

Download citation ▾
Ge Yang. Local existence of smooth solutions to the FENE dumbbell model. Chinese Annals of Mathematics, Series B, 2012, 33(4): 501-520 DOI:10.1007/s11401-012-0726-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arnold A., Carrillo J. A., Manzini C.. Refined long-time asymptotics for some polymeric fluid flow models. Commun. Math. Sci., 2010, 8(3): 763-782

[2]

Barrett J. W., Schwab C., Süli E.. Existence of global weak solutions for some polymeric flow models. Math. Models Methods Appl. Sci., 2005, 15(6): 939-983

[3]

Barrett J. W., Süli E.. Existence of global weak solutions to kinetic models of dilute polymers. Multiscale Model Simul., 2007, 6: 506-546

[4]

Barrett J. W., Süli E.. Existence of global weak solutions to dumbbell models for dilute polymers with microscopic cut-off. Math. Models Methods Appl. Sci., 2008, 18: 935-971

[5]

Barrett J. W., Süli E.. Existence of equilibration of global weak solutions to finitely extensible nonlinear bead-spring chain models for dilute polymers. Math. Models Methods Appl. Sci., 2011, 21(6): 1211-1289

[6]

Bird R. B., Curtiss C., Armstrong R. C. Dynamics of Polymeric Liquids, Vol. 2, 1987, Wiley Interscience, New York: Kinetic Theory

[7]

Constantin P., Foias C.. Navier-Stokes Equations, 1988, Chicago: The University of Chicago Press

[8]

Doi M., Edwards S. F.. The Theory of Polymer Dynamics, 1986, Oxford: Oxford University Press

[9]

E W. N., Li T. J., Zhang P. W.. Well-posedness for the dumbbell model of polymeric fluids. Comm. Math. Phys., 2004, 248(2): 409-427

[10]

Friendman A.. Partial Differential Equation, Holt, 1969, New York: Rinehart and Winston

[11]

He L. B., Zhang P.. L 2 decay of solutions to a micro-macro model for polymeric fluids near equilibrium. SIAM J. Math. Anal., 2008, 40(5): 1905-1922

[12]

Heywood J. G.. The Navier-Stokes equations: on the existence regularity and decay of solutions. Indiana Univ. Math. J., 1980, 29(5): 639-681

[13]

Hong, J. X. and Yang, G., On the regularity of solutions to FENE models, preprint.

[14]

Jourdain B., Lelièvre T.. Mathematical analysis of a stochastic differential equation arising in the micro-macro modelling of polymeric fluids, Probabilistic Methods in Fluids, 2003, River Edge, NJ: World Sci. Publ. 205-223

[15]

Jourdain B., Lelièvre T., Le Bris C.. Existence of solution for a micro-macro model of polymeric fluid: the FENE model. J. Funct. Anal., 2004, 209(1): 162-193

[16]

Jourdain B., Lelièvre T., Le Bris C. Long-time asymptotics of amultiscale model for polymeric fluid flows. Arch. Ration. Mech. Anal., 2006, 181: 97-148

[17]

Lin F. H., Liu C., Zhang P.. On a micro-macro model for polymeric fluids near equilibrium. Comm. Pure Appl. Math., 2007, 60(6): 838-866

[18]

Lin F. H., Zhang P.. The FENE dumbbell model near equilibrium. Acta Math. Sin. (Engl. Ser.), 2008, 24(4): 529-538

[19]

Lin F. H., Zhang P., Zhang Z. F.. On the global existence of smooth solution to the 2-D FENE dumbbell model. Comm. Math. Phys., 2008, 277(2): 531-553

[20]

Liu C., Liu H. L.. Boundary conditions for the microscopic FENE models. SIAM J. Appl. Math., 2008, 68(5): 1304-1315

[21]

Liu H. L., Shin J.. Global well-posedness for the microscopic FENE model with a sharp boundary condition. J. Diff. Eq., 2012, 252(1): 641-662

[22]

Liu, H. L. and Shin, J., The Cauchy-Dirichlet problem for the FENE dumbbell model of polymeric flows, Invent. Math., 2012, to appear. DOI: 10.1007/S00222-012-0399-y

[23]

Majda A. J., Bertozzi A. L.. Vorticity and Incompressible Flow, 2002, Cambridge: Cambridge University Press

[24]

Masmoudi N.. Well-posedness for the FENE dumbbell model of polymeric flows. Comm. Pure Appl. Math., 2008, 61(12): 1685-1714

[25]

Masmoudi, N., Global existence of weak solutions to the FENE dumbbell model of polymeric flows, Invent. Math., 2012, to appear. DOI: 10.1007/s00222-012-0399-y

[26]

Masmoudi N., Zhang P., Zhang Z. F.. Global well-posedness for 2D polymeric fluid models and growth estimate. Phys. D, 2008, 237(10–12): 1663-1675

[27]

Nirenberg L.. On elliptic partial differential equation. Ann. Sc. Norm. Super. Pisa, 1959, 13: 115-162

[28]

Oleǐnik O. A., Radkevič E. V.. Second Order Equations with Nonnegative Characteristic Form, 1973, Providence, RI: A. M. S.

[29]

Öttinger H.. Stochastic Processes in Polymeric Liquids, 1996, Berlin, New York: Springer-Verlag

[30]

Owens R. G., Phillips T. N.. Computational Rheology, 2002, London: Imperial College Press

[31]

Renardy M.. An existence theorem for model equations resulting from kinetic theories of polymer solutions. SIAM J. Math. Anal., 1991, 22(2): 313-327

[32]

Schonbek M. E.. Existence and decay of polymeric flows. SIAM J. Math. Anal., 2009, 41(2): 564-587

[33]

Zhang H., Zhang P. W.. Local existence for the FENE-dumbbell model of polymeric fluids. Arch. Ration. Mech. Anal., 2006, 181(2): 373-400

AI Summary AI Mindmap
PDF

103

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/