Asymptotic results for tail probabilities of sums of dependent and heavy-tailed random variables

Kam Chuen Yuen , Chuancun Yin

Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (4) : 557 -568.

PDF
Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (4) : 557 -568. DOI: 10.1007/s11401-012-0723-2
Article

Asymptotic results for tail probabilities of sums of dependent and heavy-tailed random variables

Author information +
History +
PDF

Abstract

Let X 1,X 2, ... be a sequence of dependent and heavy-tailed random variables with distributions F 1, F 2, ... on (−∞,∞), and let τ be a nonnegative integer-valued random variable independent of the sequence {X k, k ≥ 1}. In this framework, the asymptotic behavior of the tail probabilities of the quantities $S_n = \sum\limits_{k = 1}^n {X_k }$ and $S_{(n)} = \mathop {\max }\limits_{1 \leqslant k \leqslant n} S_k$ for n > 1, and their randomized versions S τ and S (τ) are studied. Some applications to the risk theory are presented.

Keywords

Asymptotic tail probability / Copula / Heavy-tailed distribution / Partial sum / Risk process

Cite this article

Download citation ▾
Kam Chuen Yuen, Chuancun Yin. Asymptotic results for tail probabilities of sums of dependent and heavy-tailed random variables. Chinese Annals of Mathematics, Series B, 2012, 33(4): 557-568 DOI:10.1007/s11401-012-0723-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Albrecher H., Asmussen S., Kortschak D.. Tail asymptotics for the sum of two heavy-tailed dependent risks. Extremes, 2006, 9: 107-130

[2]

Asmussen S.. Ruin Probabilities, 2000, Singapore: World Scientific

[3]

Bingham N. H., Goldie C. M., Teugels J. L.. Regular Variation, 1987, Cambridge: Cambridge University Press

[4]

Chen Y., Yuen K. C.. Sums of pairwise quasi-asymptotically independent random variables with consistent variation. Stoch. Models, 2009, 25: 76-89

[5]

Denisov D., Foss S., Korshunov D.. Tail asymptotics for the supremum of a random walk when the mean is not finite. Queueing Syst., 2004, 46: 15-33

[6]

Denisov D., Foss S., Korshunov D.. On lower limits and equivalences for distribution tails of randomly stopped sums. Bernoulli, 2008, 14: 391-404

[7]

Denisov D., Foss S., Korshunov D.. Lower limits for distribution tails of randomly stopped sums. Theory Probab. Appl., 2008, 52: 690-699

[8]

Denisov D., Foss S., Korshunov D.. Asymptotics of randomly stopped sums in the presence of heavy tails. Bernoulli, 2010, 16(4): 971-994

[9]

Embrechts P., Goldie C. M., Veraverbeke N.. Subexponentiality and infinite divisibility. Z. Wahrsch. Verw. Gebiete, 1979, 49: 335-347

[10]

Embrechts P., Klüppelberg C., Mikosch T.. Modelling Extremal Events for Insurance and Finance, 1997, Berlin: Springer-Verlag

[11]

Foss S., Korshunov D.. Lower limits and equivalences for convolution tails. Ann. Probab., 2007, 35: 366-383

[12]

Foss S., Richards A.. On sums of conditionally independent subexponential random variables. Math. Oper. Res., 2010, 35(1): 102-119

[13]

Geluk J., Tang Q. H.. Asymptotic tail probabilities of sums of dependent subexponential random variables. J. Theoret. Probab., 2009, 22: 871-882

[14]

Kaas R., Tang Q. H.. Note on the tail behavior of random walk maxima with heavy tails and negative drift. North Amer. Actuar. J., 2003, 7(3): 57-61

[15]

Klüppelberg C.. Subexponential distributions and integrated tails. J. Appl. Probab., 1988, 25: 132-141

[16]

Ko B., Tang Q. H.. Sums of dependent nonnegative random variables with subexponential tails. J. Appl. Probab., 2008, 45: 85-95

[17]

Korshunov D.. Large-deviation probabilities for maxima of sums of independent random variables with negative mean and subexponential distribution. Theory Probab. Appl., 2002, 46: 355-366

[18]

Kotz S., Balakrishnan N., Johnson N. L.. Continuous Multivariate Distributions: Models and Applications, 2000 2nd ed. New York: Wiley

[19]

Nelsen R. B.. An Introduction to Copulas, 2006 2nd ed. New York: Springer-Verlag

[20]

Ng K. W., Tang Q. H., Yan J. A., Yang H. L.. Precise large deviations for the prospective-loss process. J. Appl. Probab., 2003, 40: 391-400

[21]

Ng K. W., Tang Q. H.. Asymptotic behavior of tail and local probabilities for sums of subexponential random variables. J. Appl. Probab., 2004, 41: 108-116

[22]

Ng K. W., Tang Q. H., Yang H. L.. Maxima of sums of heavy-tailed random variables. ASTIN Bull., 2002, 32: 43-55

[23]

Resnick S. I.. Hidden regular variation, second order regular variation and asymptotic independence. Extremes, 2002, 5: 303-336

[24]

Tang Q. H.. The ruin probability of a discrete time risk model under constant interest rate with heavy tails. Scandinavian Actuarial Journal, 2004, 3: 229-240

[25]

Tang Q. H.. Asymptotic ruin probabilities in finite horizon with subexponential losses and associated discount factors. Probab. Engrg. Inform. Sci., 2006, 20: 103-113

[26]

Yu C., Wang Y., Cui Z.. Lower limits and upper limits for tails of random sums supported on ℝ. Statist. Prob. Lett., 2010, 80: 1111-1120

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/