Higher-order Schwarz-Pick estimates for holomorphic self-mappings on classical domains

Yang Liu , Zhihua Chen

Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (4) : 601 -608.

PDF
Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (4) : 601 -608. DOI: 10.1007/s11401-012-0719-y
Article

Higher-order Schwarz-Pick estimates for holomorphic self-mappings on classical domains

Author information +
History +
PDF

Abstract

In this paper, Schwarz-Pick estimates for high order Fréchet derivatives of holomorphic self-mappings on classical domains are presented. Moreover, the obtained result can deduce the early work on Schwarz-Pick estimates of higher-order partial derivatives for bounded holomorphic functions on classical domains.

Keywords

Schwarz-Pick estimate / Holomorphic self-mapping / Classical domain / Holomorphic expansion

Cite this article

Download citation ▾
Yang Liu, Zhihua Chen. Higher-order Schwarz-Pick estimates for holomorphic self-mappings on classical domains. Chinese Annals of Mathematics, Series B, 2012, 33(4): 601-608 DOI:10.1007/s11401-012-0719-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hua, L. K., Harmonic analysis of functions of several complex variables in the classical domains, Translations of Mathematical Monographs, Vol. 6, A. M. S., Providence, RI, 1963.

[2]

Liu T. S.. The growth theorems and covering theorems for biholomorphic mappings on classical domains (in Chinese), 1989, Hefei: University of Science and Technology of China

[3]

Liu X. S., Liu T. S.. An inequality of homogeneous expansion for biholomorphic quasi-convex mappings on the unit polydisk and its application. Acta Math. Scient., 2009, 29B(1): 201-209

[4]

Liu X. S.. On the quasi-convex mappings on the unit polydisk in ℂn. J. Math. Anal. Appl., 2007, 335: 43-55

[5]

Hamada H., Honda T., Kohr G.. Growth theorems and coefficient bounds for univalent holomorphic mappings which have parametric representation. J. Math. Anal. Appl., 2006, 317: 302-319

[6]

Anderson J. M., Rovnyak J.. On generalized Schwarz-Pick estimates. Mathematika, 2006, 53: 161-168

[7]

Pan Y. F., Liao X.. On the estimates of bounded analytic functions (in Chinese). J. Jiangxi Normal University, 1984, 1: 21-24

[8]

Ruscheweyh S.. Two remarks on bounded analytic functions. Serdica, 1985, 11: 200-202

[9]

Beneteau C., Dahlner A., Khavinson D.. Remarks on the Bohr phenomenon. Comput. Meth. Funct. Theory, 2004, 4: 1-19

[10]

Avkhadiev F. G., Wirths K. J.. Schwarz-Pick inequalities for derivatives of arbitrary order. Constr. Approx., 2003, 19: 265-277

[11]

Maccluer B., Stroethoff K., Zhao R.. Generalized Schwarz-Pick estimates. Proc. Amer. Math. Soc., 2002, 131: 593-599

[12]

Zhang M. Z.. Generalized Schwarz-Pick lemma (in Chinese). Acta Math. Sin., 2006, 49(3): 613-616

[13]

Ghatage P., Zheng D. C.. Hyperbolic derivatives and generalized Schwarz-Pick estimates. Proc. Amer. Math. Soc., 2004, 132: 3309-3318

[14]

Dai S. Y., Pan Y. F.. Note on Schwarz-Pick estimates for bounded and positive real part analytic functions. Proc. Amer. Math. Soc., 2008, 136: 635-640

[15]

Chen Z. H., Liu Y.. Schwarz-Pick estimates for bounded holomorphic functions in the unit ball of ℂn. Acta Math. Sin., 2010, 26(5): 901-908

[16]

Anderson J. M., Dritschel M. A., Rovnyak J.. Schwarz-Pick inequalities for the Schur-Agler class on the polydisk and unit ball. Comput. Meth. and Funct. Theory, 2008, 8(2): 339-361

[17]

Dai S. Y., Chen H. H., Pan Y. F.. The Schwarz-Pick lemma of high order in several variables. Michigan Math. J., 2010, 59(3): 517-533

[18]

Liu Y., Chen Z. H.. Schwarz-Pick estimates for bounded holomorphic functions on classical domains. Acta Math. Scient., 2011, 31(4): 1377-1382

[19]

Liu T. S., Wang J. F.. An absolute estimate of the homogeneous expansions of holomorphic mappings. Pacific J. Math., 2007, 231(1): 155-166

AI Summary AI Mindmap
PDF

163

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/