Convergence rates of wavelet estimators in semiparametric regression models under NA samples

Hongchang Hu , Li Wu

Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (4) : 609 -624.

PDF
Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (4) : 609 -624. DOI: 10.1007/s11401-012-0718-z
Article

Convergence rates of wavelet estimators in semiparametric regression models under NA samples

Author information +
History +
PDF

Abstract

Consider the following heteroscedastic semiparametric regression model: $y_i = X_i^T \beta + g\left( {t_i } \right) + \sigma _i e_i , 1 \leqslant i \leqslant n,$ where {X i, 1 ≤ in} are random design points, errors {e i, 1 ≤ in} are negatively associated (NA) random variables, σ i 2 = h(u i), and {u i} and {t i} are two nonrandom sequences on [0, 1]. Some wavelet estimators of the parametric component β, the nonparametric component g (t) and the variance function h (u) are given. Under some general conditions, the strong convergence rate of these wavelet estimators is $O\left( {n^{ - \tfrac{1}{3}} \log n} \right)$. Hence our results are extensions of those results on independent random error settings.

Keywords

Semiparametric regression model / Wavelet estimate / Negatively associated random error / Strong convergence rate

Cite this article

Download citation ▾
Hongchang Hu, Li Wu. Convergence rates of wavelet estimators in semiparametric regression models under NA samples. Chinese Annals of Mathematics, Series B, 2012, 33(4): 609-624 DOI:10.1007/s11401-012-0718-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Speckman P.. Kernel smoothing in partial linear models. J. R. Statist. Soc. B, 1988, 50: 413-436

[2]

Fan J., Yao Q.. Nonlinear Time Series: Nonparametric and Parametric Methods, 2003, New York: Springer-Verlag

[3]

Alam K., Saxena K. M. L.. Positive dependence in multivariate distributions. Comm. Statist. Theory Methods Ser. A, 1981, 10: 1183-1196

[4]

Joag-Dev K., Proschan F.. Negative association of random variables with applications. Ann. Statist., 1983, 11: 286-295

[5]

Matula P.. A note on the almost sure convergence of sums of negatively dependences random variables. Statist. Probab. Lett., 1992, 15: 209-213

[6]

Shao Q. M., Su C.. The law of the iterated logarithm for negatively associated random variables. Stochastic Process Appl., 1999, 83: 139-148

[7]

Wu Q., Jiang Y.. A law of the iterated logarithm of partial sums for NA random variables. J. Korean Statist. Soc., 2010, 39: 199-206

[8]

Liang H. Y.. Complete convergence for weighted sums of negatively associated random variables. Statist. Probab. Lett., 2000, 48: 317-325

[9]

Baek J. I., Kim T. S., Liang H. Y.. On the convergence of moving average processes under dependent conditions. Austral. New Zealand J. Statist., 2003, 45(3): 331-342

[10]

Liang H., Zhang J.. Strong convergence for weighted sums of negatively associated arrays. Chin. Ann. Math., 2010, 31B(2): 273-288

[11]

Su C., Zhao L., Wang Y.. The moment inequality for NA random variables and the weak convergence (in Chinese). Sci. China Ser. A, 1996, 26(12): 1091-1099

[12]

Jin J.. Convergence rate in the law of logarithm for NA random fields (in Chinese). Acta Math. Sciencia Ser. A, 2009, 29(4): 1138-1143

[13]

Roussas G. G.. Asymptotic normality of random fields of positively or negatively associated processes. J. Multivariate Anal., 1994, 50: 152-173

[14]

Chen H.. Convergence rates for parametric components in a partly linear model. Ann. Statist., 1988, 16(1): 136-146

[15]

Qian W. M., Cai G. X.. Strong approximability of wavelet estimate in semiparametric regression model (in Chinese). Sci. China Ser. A, 1999, 29(3): 233-240

[16]

Xue L., Liu Q.. Bootstrap approximation of wavelet estimates in a semiparametric regression model. Acta Math. Sin. (Engl. Ser.), 2010, 26(4): 763-778

[17]

Chai G. X., Xu K. J.. Wavelet smoothing in semiparametric regression model (in Chinese). Chinese J. Appl. Probab. Statist., 1999, 15(1): 97-105

[18]

Hu H. C.. Ridge estimation of a semiparametric regression model. J. Comput. and Appl. Math., 2005, 176: 215-222

[19]

Heckman N.. Spline smoothing in partly linear models. J. R. Statist. Soc. B, 1986, 48: 244-248

[20]

Green P. J., Silverman B. W.. Nonparametric Regression and Generalized Linear Models, 1995, London: Chapman and Hall

[21]

Härdle W., Liang H., Gao J.. Partially Linear Models, 2000, Heidelberg: Physica-Verlag

[22]

Shi P., Li G.. A note on the convergent rates of M-estimates for a partly linear model. Statistics, 1995, 26: 27-47

[23]

Bianco A., Boente G.. Robust estimators in semiparametric partly linear regression models. J. Statist. Plann. Inference, 2004, 122: 229-252

[24]

Hu H. C., Hu D. H.. Strong consistency of wavelet estimation in semiparametric regression models (in Chinese). Acta Math. Sinca, 2006, 49(5): 1417-1424

[25]

Hu H. C., Hu D. H.. Wavelet estimation in semiparametric regression models with martingale differences time series errors (in Chinese). Adv. Math., 2010, 39(1): 23-30

[26]

You J., Chen G.. Semiparametric generalized least squares estimation in partially linear regression models with correlated errors. J. Statist. Plann. Inference, 2007, 137(1): 117-132

[27]

Liang H., Jing B.. Asymptotic normality in partial linear models based on dependent errors. J. Statist. Plann. Inference, 2009, 139: 1357-1371

[28]

Zhou, X., Liu, X. and Hu, S., Moment consistency of estimators in partially linear models under NA samples, Metrika, 2009. DOI:10.10071/s00184-009-0260-5

[29]

Baek J., Liang H.. Asymptotics of estimators in semi-parametric model under NA samples. J. Statist. Plann. Inference, 2006, 136: 3362-3382

[30]

Liang H., Wang X.. Convergence rate of wavelet estimator in semiparametric models with dependent MA() error process. Chinese J. Appl. Probab. Statist., 2010, 26(1): 35-46

[31]

Ren Z., Chen M.. Strong consistency of a class of estimators in partial linear model for negative associated samples (in Chinese). Chinese J. Appl. Probab. Statist., 2002, 18(1): 60-66

[32]

Zhou X., You J.. Wavelet estimation in varying-coefficient partially linear regression models. Statist. Probab. Lett., 2004, 68: 91-104

[33]

Antoniads A., Gregoire G., Mckeague I. W.. Wavelet methods for curve estimation. J. Amer. Statist. Assoc., 1994, 89: 1340-1353

[34]

Zhu C.. The convergence rate of the estimate of the regression function under NA sequence. J. Xinjiang Norm. Univ. Nat. Sci. Ed., 2008, 27(2): 5-11

[35]

Hu H. C.. Convergence rates of wavelet estimators in semiparametric regression models with martingale difference error. J. Math. Sci. Adv. Appl., 2009, 3(1): 4-19

[36]

Xu B.. Convergence of the weighted sums with applications for strongly mixing sequence (in Chinese). Acta Math. Sinica, 2002, 45(5): 1025-1034

[37]

Liu J., Gan S., Chen P.. The Hjeck-Rnyi inequality for the NA random variables and its application. Statist. Probab. Lett., 1999, 43: 99-105

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/