The Teodorescu operator in Clifford analysis

F. Brackx , H. De Schepper , M. E. Luna-Elizarrarás , M. Shapiro

Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (4) : 625 -640.

PDF
Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (4) : 625 -640. DOI: 10.1007/s11401-012-0717-0
Article

The Teodorescu operator in Clifford analysis

Author information +
History +
PDF

Abstract

Euclidean Clifford analysis is a higher dimensional function theory centred around monogenic functions, i.e., null solutions to a first order vector valued rotation invariant differential operator $\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\partial }$ called the Dirac operator. More recently, Hermitian Clifford analysis has emerged as a new branch, offering yet a refinement of the Euclidean case; it focuses on the simultaneous null solutions, called Hermitian monogenic functions, to two Hermitian Dirac operators $\partial _{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{z} }$ and $\partial _{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{z} ^\dag }$ which are invariant under the action of the unitary group. In Euclidean Clifford analysis, the Teodorescu operator is the right inverse of the Dirac operator $\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\partial }$. In this paper, Teodorescu operators for the Hermitian Dirac operators $\partial _{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{z} }$ and $\partial _{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{z} ^\dag }$ are constructed. Moreover, the structure of the Euclidean and Hermitian Teodorescu operators is revealed by analyzing the more subtle behaviour of their components. Finally, the obtained inversion relations are still refined for the differential operators issuing from the Euclidean and Hermitian Dirac operators by splitting the Clifford algebra product into its dot and wedge parts. Their relationship with several complex variables theory is discussed.

Keywords

Clifford analysis / Teodorescu operator / Dirac operator

Cite this article

Download citation ▾
F. Brackx, H. De Schepper, M. E. Luna-Elizarrarás, M. Shapiro. The Teodorescu operator in Clifford analysis. Chinese Annals of Mathematics, Series B, 2012, 33(4): 625-640 DOI:10.1007/s11401-012-0717-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Blaya R. A., Reyes J. B., Brackx F. Hermitian Cauchy integral decomposition of continuous functions on hypersurfaces. Bound. Value Probl., 2009, 2009: 425256

[2]

Blaya R. A., Reyes J. B., Pena D. P. A boundary value problem for Hermitian monogenic functions. Bound. Value Probl., 2008, 2008: 385874

[3]

Brackx F., Bureš J., De Schepper H. Fundaments of Hermitian Clifford analysis, Part I: complex structure. Compl. Anal. Oper. Theory, 2007, 1(3): 341-365

[4]

Brackx F., Bureš J., De Schepper H. Fundaments of Hermitian Clifford analysis, Part II: splitting of h-monogenic equations. Complex Var. Elliptic Eq., 2007, 52(10–11): 1063-1079

[5]

Brackx F., De Knock B., De Schepper H.. Son L., Tutschke W., Jain S.. A specific family of Clifford distributions, Methods of Complex and Clifford Analysis, 2004, Delhi: SAS Int. Publ. 215-227

[6]

Brackx F., De Knock B., De Schepper H.. Multi-vector spherical monogenics, spherical means and distributions in Clifford analysis. Acta Math. Sin., 2005, 21(5): 1197-1208

[7]

Brackx F., De Knock B., De Schepper H.. On the Fourier spectra of distributions in Clifford analysis. Chin. Ann. Math., 2006, 27B(5): 495-506

[8]

Brackx F., De Knock B., De Schepper H.. A matrix Hilbert transform in Hermitian Clifford analysis. J. Math. Anal. Appl., 2008, 344(2): 1068-1078

[9]

Brackx F., De Knock B., De Schepper H. A calculus scheme for Clifford distributions. Tokyo J. Math., 2006, 29(2): 495-513

[10]

Brackx, F., De Knock, B., De Schepper, H., et al., Distributions in Clifford Analysis: an Overview, Clifford Analysis and Applications-Proceedings of the Summer School, S.-L. Eriksson (ed.), Tampere 2004, Tampere University of Technology, Institute of Mathematics, Research Report, 82, 2006, 59–73.

[11]

Brackx F., De Knock B., De Schepper H. On Cauchy and Martinelli-Bochner integral formulae in Hermitian Clifford analysis. Bull. Braz. Math. Soc., 2009, 40(3): 395-416

[12]

Brackx F., Delanghe R., Sommen F.. Clifford Analysis, 1982, Boston, London, Melbourne: Pitman Publishers

[13]

Brackx F., Delanghe R., Sommen F.. Spherical means, distributions and convolution operators in Clifford analysis. Chin. Ann. Math., 2003, 24B(2): 133-146

[14]

Brackx F., Delanghe R., Sommen F. Qian T., Hempfling T., McIntosh A. Spherical means and distributions in Clifford analysis, Advances in Analysis and Geometry: New Developments Using Clifford Algebras. Trends in Mathematics, 2004, Basel: Birkhäuser Verlag 65-96

[15]

Brackx F., Delanghe R., Sommen F.. Differential forms and/or multivector functions. Cubo, 2005, 7(2): 139-169

[16]

Brackx F., De Schepper H., Eelbode D. The Howe dual pair in Hermitian Clifford analysis. Rev. Mat. Iberoamericana, 2010, 26(2): 449-479

[17]

Brackx F., De Schepper H., Luna-Elizarrarás M. E. Gürlebeck K., Könke C. Integral representation formulae in Hermitian Clifford analysis. Proceedings of the 18th International Conference on the Application of Computer Science and Mathematics in Architecture and Civil Engineering, 2009, Germany: Weimar

[18]

Brackx F., De Schepper H., Luna-Elizarrarás M. E. On fundamental solutions in Clifford analysis. Compl. Anal. Oper. Theory, 2012, 6(2): 325-339

[19]

Brackx F., De Schepper H., Sommen F.. A theoretical framework for wavelet analysis in a Hermitian Clifford setting. Commu. Pure Appl. Anal., 2007, 6(3): 549-567

[20]

Brackx F., De Schepper H., Sommen F.. The Hermitian Clifford analysis toolbox. Appl. Clifford Algebras, 2008, 18(3–4): 451-487

[21]

Brackx F., De Schepper H., Souček V.. Differential forms versus multivector functions in Hermitian Clifford analysis. Cubo, 2011, 13(2): 85-117

[22]

Delanghe R., Sommen F., Souček V.. Clifford Algebra and Spinor-Valued Functions, 1992, Dordrecht: Kluwer Academic Publishers

[23]

Gilbert J., Murray M.. Clifford Algebras and Dirac Operators in Harmonic Analysis, 1991, Cambridge: Cambridge University Press

[24]

Guerlebeck K., Habetha K., Sproessig W.. Holomorphic Functions in the Plane and n-Dimensional Space (translated from the 2006 German original), 2008, Basel: Birkhäuser Verlag

[25]

Guerlebeck K., Sproessig W.. Quaternionic and Clifford Calculus for Physicists and Engineers, 1998, Chichester: Wiley

[26]

Krantz S.. Function Theory of Several Complex Variables, 1992 2nd edition Pacific Grove: Wadsworth & Brooks/Cole

[27]

Kytmanov A.. The Bochner-Martinelli Integral and Its Applications, 1995, Basel: Birkhäuser Verlag

[28]

Rocha-Chavez R., Shapiro M., Sommen F.. Integral Theorems for Functions and Differential Forms in ℂm, 2002, New York: Chapman & Hall/CRC

[29]

Ryan J.. Complexified Clifford analysis. Comp. Var. Theory Appl., 1982, 1: 119-149

[30]

Sabadini I., Sommen F.. Hermitian Clifford analysis and resolutions. Math. Meth. Appl. Sci., 2002, 25(16–18): 1395-1414

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/