Large-time behavior of periodic solutions to fractal Burgers equation with large initial data

Lijuan Wang , Weike Wang

Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (3) : 405 -418.

PDF
Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (3) : 405 -418. DOI: 10.1007/s11401-012-0710-7
Article

Large-time behavior of periodic solutions to fractal Burgers equation with large initial data

Author information +
History +
PDF

Abstract

The asymptotic behavior of periodic solutions to fractal nonlinear Burgers equation is considered and the initial data are allowed to be arbitrarily large. The exponential decay estimates of the solutions are obtained for the power of Laplacian α ∈ [1/2, 1).

Keywords

Fractal Burgers equation / Large-time behavior / Large initial data / Periodic solution / Exponential decay

Cite this article

Download citation ▾
Lijuan Wang, Weike Wang. Large-time behavior of periodic solutions to fractal Burgers equation with large initial data. Chinese Annals of Mathematics, Series B, 2012, 33(3): 405-418 DOI:10.1007/s11401-012-0710-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dong H., Du D., Li D.. Finite time singularities and global well-posedness for fractal Burgers equations. Indiana Univ. Math. J., 2009, 58(2): 807-821

[2]

Miao C., Wu G.. Global well-posedness of the critical Burgers equation in critical Besov spaces. J. Diff. Eq., 2009, 247(6): 1673-1693

[3]

Chan C. H., Czubak M.. Regularity of solutions for the critical N-dimensional Burgers equation. Ann. Inst. H. Poincaré Anal. Non Linéaire, 2010, 27(2): 471-501

[4]

Kiselev, A., Nazarov, F. and Shterenberg, R., Blow up and regularity for fractal Burgers equation, preprint.

[5]

Kiselev A., Nazarov F., Volberg A.. Global well-posedness for the critical 2D dissipative quasi-geostrophic equation. Invent. Math., 2007, 167: 445-453

[6]

Dong H.. Dissipative quasi-geostrophic equations in critical Sobolev spaces: smoothing effect and global well-posedness. Discrete Contin. Dyn. Syst., 2010, 26(4): 1197-1211

[7]

Biler P., Funaki T., Woycznski W. A.. Fractal Burgers Equation. J. Diff. Eq., 1998, 148: 9-46

[8]

Alibaud N., Droniou J., Vovelle J.. Occurrence and non-appearance of shocks in fractal Burgers equations. J. Hyperbolic Diff. Eq., 2007, 4(3): 479-499

[9]

Kiselev A.. Regularity and blow up for active scalars. Math. Model. Nat. Phenom., 2010, 5(4): 225-255

[10]

Wu J. H.. The quasi-geostrophic equation and its two regularizations. Commun. Part. Diff. Eq., 2002, 27: 1161-1181

[11]

Ramzi M., Ezzeddine Z.. Global existence of solution for subcriticle quasi-geostrophic equations. Commun. Pure Appl. Anal., 2008, 7: 1179-1191

[12]

Cordoba A., Cordoba D.. A maximum principle applied to quasi-geostrophic equation. Commun. Math. Phys., 2004, 249: 511-528

[13]

Cordoba A., Cordoba D.. A pointwise estimate for fractionary derivatives with applications to partical differential equations. Proc. Nat. Acad. Sci. USA, 2003, 100: 15316-15317

[14]

Lions J. L., Magenes B.. Nonhomogeneous Boundary Value Problems and Applications, 1972, New York: Springer-Verlag

[15]

Resnick S.. Dynamical Problems in Non-linear Advective Partial Differential Equations, 1995, Chicago: University of Chicago

[16]

Kenig C., Ponce G., Vega L.. Well-posedness of the initial value problem for the Korteweg-Devries equation. J. Amer. Math. Soc., 1991, 4: 323-347

[17]

Kato T.. Lyapunov functions and monotonicity in the Navier-Stoked equations, 1990, Berlin: Springer-Verlag

[18]

Teman R.. Navier-Stokes Equations Theory and Numerical Analysis, 1977, Amsterdam: North-Holland

AI Summary AI Mindmap
PDF

174

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/