Asymptotic distribution of the jump change-point estimator

Changchun Tan , Huifang Niu , Baiqi Miao

Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (3) : 429 -436.

PDF
Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (3) : 429 -436. DOI: 10.1007/s11401-012-0708-1
Article

Asymptotic distribution of the jump change-point estimator

Author information +
History +
PDF

Abstract

The asymptotic distribution of the change-point estimator in a jump changepoint model is considered. For the jump change-point model X i = a + θI{[ 0] < in} + ɛ i, where ɛ i (i = 1, ..., n) are independent identically distributed random variables with i = 0 and Var(ɛ i) < ∞, with the help of the slip window method, the asymptotic distribution of the jump change-point estimator $\hat \tau$ is studied under the condition of the local alternative hypothesis.

Keywords

Change-point / Local alternative hypothesis / Asymptotic distribution

Cite this article

Download citation ▾
Changchun Tan, Huifang Niu, Baiqi Miao. Asymptotic distribution of the jump change-point estimator. Chinese Annals of Mathematics, Series B, 2012, 33(3): 429-436 DOI:10.1007/s11401-012-0708-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aue A., Gabrys R., Horvath L., Kokoszka P.. Estimation of a change-point in the mean function of functional data. J. Multivariate Anal., 2009, 100: 2254-2269

[2]

Bai J.. Least squares estimation of a shift in linear process. J. Time Ser. Anal., 1994, 15: 453-472

[3]

Bai J., Perron P.. Estimating and testing linear models with multiple structural changes. Econometrica, 1998, 66: 47-78

[4]

Braun J. V., Braun R. K., Muller H. G.. Multiple changepoint fitting via quasilikelihood, with application to DNA sequence segmentation. Biometrika, 2000, 87(2): 301-314

[5]

Chen G., Choi Y. K., Zhou Y.. Nonparametric estimation of structural change points in volatility models for time series. J. Econometrics, 2005, 126: 79-114

[6]

Chen G., Choi Y. K., Zhou Y.. Detections of changes in return by a wavelet smoother with conditional heteroscedastic volatility. J. Econometrics, 2008, 143: 227-262

[7]

Chen X. R.. Inference in a simple change-point model. Scientia Sinica A, 1988, 6: 654-667

[8]

Cheon S., Kim J.. Multiple change-point detection of multivariate mean vectors with the Bayesian approach. Comput. Statist. Data Anal., 2010, 54: 406-415

[9]

Chernoff H., Zacks S.. Estimating the current mean of normal distribution which is subjected to change in time. Ann. Statist., 1964, 35: 999-1018

[10]

Csörgö M., Horváth L.. Limit Theorems in Change-Points Analysis, 1997, New York: John Wily and Sons

[11]

Daniel B. D., Hartigan J. A.. A Bayesian analysis for change point problems. J. Amer. Statist. Assoc., 1993, 88: 309-319

[12]

Fotopoulos S., Jandhyala V.. Maximum likelihood estimation of a change-point for exponentially distributed random variables. Statist. Probab. Lett., 2001, 51: 423-429

[13]

Grabovsky I., Horváth L., Hušková M.. Limit theorems for kernel-type estimators for the time of change. J. Statist. Plann. Inference, 2000, 89: 26-56

[14]

Hinkley D. V.. Inference in two-phase regression. J. Amer. Statist. Assoc., 1971, 66: 736-743

[15]

Huskova M., Prakova Z., Steinebach J.. On the detection of changes in autoregressive time series I asymptotics. J. Statist. Plann. Inference, 2007, 137: 1243-1259

[16]

Miao B. Q.. Inference in a model with at most one slope-change point. J. Multivariate Anal., 1988, 27: 375-391

[17]

Pan J., Chen J.. Application of modified information criterion to multiple change point problems. J. Multivariate Anal., 2006, 97: 2221-2241

[18]

Perron P., Qu Z.. Estimating restricted structural change models. J. Econometrics, 2006, 134(2): 373-399

[19]

Ramanayake A., Gupta A. K.. Change points with linear trend followed by abrupt change for the exponential distribution. J. Stat. Comput. Simul., 2002, 72(4): 263-278

[20]

Rudoy D., Yuen S. G., Howe R. D., Wolfe P. J.. Bayesian change-point analysis for atomic force microscopy and soft material indentation. J. Roy. Statist. Soc. Ser. C, 2010, 59: 1-21

[21]

Sertkaya D., Kadilar C.. A new Bayes estimate of the change point in the hazard function. Comput. Statist. Data Anal., 2007, 51: 2993-3001

[22]

Tan C. C., Niu H. F., Miao B. Q.. Convergence rate for the change-point estimator in a simple change-point model (in Chinese). Chin. Ann. Math., 2010, 31A(3): 257-264

[23]

Tan, C. C., Hui, J. and Miao, B.Q., O P convergence rate for the jump change-point estimator (in Chinese), J. Systems Sci. Math. Sci., 2012, to appear.

[24]

Wu Y.. Simultaneous change point analysis and variable selection in a regression problem. J. Multivariate Anal., 2008, 99: 2154-2171

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/