Nonresonance and global existence of nonlinear elastic wave equations with external forces

Yi Zhou , Wei Xu

Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (3) : 437 -452.

PDF
Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (3) : 437 -452. DOI: 10.1007/s11401-012-0707-2
Article

Nonresonance and global existence of nonlinear elastic wave equations with external forces

Author information +
History +
PDF

Abstract

This paper establishes the global existence of classical solution to the system of homogeneous, isotropic hyperelasticity with time-independent external force, provided that the nonlinear term obeys a type of null condition. The authors first prove the existence and uniqueness of the stationary solution. Then they show that the solution to the dynamical system converges to the stationary solution as time goes to infinity.

Keywords

Nonlinear elasticity / Global existence / Null condition / External force

Cite this article

Download citation ▾
Yi Zhou, Wei Xu. Nonresonance and global existence of nonlinear elastic wave equations with external forces. Chinese Annals of Mathematics, Series B, 2012, 33(3): 437-452 DOI:10.1007/s11401-012-0707-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Agemi R.. Global existence of nonlinear elastic waves. Invent. Math., 2000, 142: 225-250

[2]

Hidano K.. An elementary proof of global or almost global existence for quasi-linear wave equations. Tohoku Math. J. (2), 2004, 56(2): 271-287

[3]

John F.. Formation of singularities in elastic waves, 1984, New York: Springer-Verlag 194-210

[4]

John F.. Almost global existence of elastic waves of finite amplitude arising from small initial disturbances. Comm. Pure Appl. Math., 1988, 41: 615-666

[5]

Klainerman S., Sideris T. C.. On almost global existence for nonrelativistic wave equations in 3D. Comm. Pure Appl. Math., 1996, 49(3): 307-321

[6]

Sideris T. C.. Nonresonance and global existence of prestressed nonlinear elastic waves. Ann. of Math. (2), 2000, 151(2): 849-874

[7]

Sideris T. C.. The null condition and global existence of nonlinear elastic waves. Invent. Math., 1996, 123: 323-342

[8]

Tahvildar-Zadeh A. S.. Relativistic and nonrelativistic elastodynamics with small shear strains. Ann. Inst. H. Poincaré-Phys. Théor., 1998, 69: 275-307

[9]

Zhou Y., Xu W.. Almost global existence for quasilinear wave equations with inhomogeneous terms in 3D. Forum Math., 2011, 23: 1113-1134

AI Summary AI Mindmap
PDF

101

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/