Maximal dimension of invariant subspaces to systems of nonlinear evolution equations

Shoufeng Shen , Changzheng Qu , Yongyang Jin , Lina Ji

Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (2) : 161 -178.

PDF
Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (2) : 161 -178. DOI: 10.1007/s11401-012-0705-4
Article

Maximal dimension of invariant subspaces to systems of nonlinear evolution equations

Author information +
History +
PDF

Abstract

In this paper, the dimension of invariant subspaces admitted by nonlinear systems is estimated under certain conditions. It is shown that if the two-component nonlinear vector differential operator \mathbb{F} = (F^1 ,F^2 ) with orders {k 1, k 2} (k 1k 2) preserves the invariant subspace W_{n_1 }^1 \times W_{n_2 }^2 (n_1 \geqslant n_2 ), then n 1n 2k 2, n 1 ≤ 2(k 1 + k 2) + 1, where W_{n_q }^q is the space generated by solutions of a linear ordinary differential equation of order n q (q = 1, 2). Several examples including the (1+1)-dimensional diffusion system and Itô’s type, Drinfel’d-Sokolov-Wilson’s type and Whitham-Broer-Kaup’s type equations are presented to illustrate the result. Furthermore, the estimate of dimension for m-component nonlinear systems is also given.

Keywords

Invariant subspace / Nonlinear PDEs / Exact solution / Symmetry / Dynamical system

Cite this article

Download citation ▾
Shoufeng Shen, Changzheng Qu, Yongyang Jin, Lina Ji. Maximal dimension of invariant subspaces to systems of nonlinear evolution equations. Chinese Annals of Mathematics, Series B, 2012, 33(2): 161-178 DOI:10.1007/s11401-012-0705-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bluman G. W., Kumei S.. Symmetries and Differential Equations, 1989, New York: Springer-Verlag

[2]

Olver P. J.. Applications of Lie Groups to Differential Equations, 1993 2nd ed. New York: Springer-Verlag

[3]

Galaktionov V. A., Svirshchevskii S. R.. Exact Solutions and Invarinat Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics, 2007, London: Chapman and Hall/CRC

[4]

King J. R.. Exact polynomial solutions to some nonlinear diffusion equations. Phys. D, 1993, 64: 35-65

[5]

Galaktionov V. A.. Invariant subspaces and new explicit solutions to evolution equations with quadratic nonlinearities. Proc. Roy. Soc. Endin. Sect. A, 1995, 125: 225-246

[6]

Svirshchevskii S. R.. Lie-Bäcklund symmetries of linear ODEs and generalised separation of variables in nonlinear equations. Phys. Lett. A, 1995, 199: 344-348

[7]

Fokas A. S., Liu Q. M.. Nonlinear interaction of travelling waves of nonintegrable equations. Phys. Rev. Lett., 1994, 72: 3293-3296

[8]

Zhdanov R. Z.. Conditional Lie-Bäcklund symmetry and reductions of evolution equations. J. Phys. A: Math. Gen., 1995, 28: 3841-3850

[9]

Qu C. Z.. Group classification and generalized conditional symmetry reduction of the nonlinear diffusion-convection equation with a nonlinear source. Stud. Appl. Math., 1997, 99: 107-136

[10]

Qu C. Z., Ji L. N., Wang L. Z.. Conditional Lie-Bäcklund symmetries and sign-invarints to quasi-linear diffusion equations. Stud. Appl. Math., 2007, 119: 355-391

[11]

Ji L. N., Qu C. Z.. Conditional Lie-Bäcklund symmetries and solutions to (n+1)-dimensional nonlinear diffusion equations. J. Math. Phys., 2007, 48: 103509

[12]

Hirota R., Grammaticos B., Ramani A.. Soliton structure of the Drinfel’d-Sokolov-Wilson equation. J. Math. Phys., 1986, 27: 1499-1505

[13]

Ma W. X., Fan E. G.. Linear superposition principle applying to Hirota bilinear equations. Comput. Math. Appl., 2011, 61: 950-959

[14]

Ma W. X.. Complexiton solutions to integrable equations. Nonlinear Anal., 2005, 63: e2461-e2471

[15]

Qu C. Z., Zhu C. R.. Classification of coupled systems with two-component nonlinear diffusion equations by the invariant subspace method. J. Phys. A: Math. Theor., 2009, 42: 475201

[16]

Zhu C. R., Qu C. Z.. Maximal dimension of invariant subspaces admitted by nonlinear vector differential operators. J. Math. Phys., 2011, 52: 043507

[17]

Hirota R., Hu X. B., Yang X. Y.. A vector potential KdV equation and vector Itô equation: soliton solutions, bilinear Bäcklund transformations and Lax pairs. J. Math. Anal. Appl., 2003, 288: 326-348

[18]

Makhankov V. G., Myrsakulov R., Pashaev O. K.. Gauge equivalence, supersymmetry and classical solutions of the ospu (1,1/1) Heisenberg model and the nonlinear Schrödinger equation. Lett. Math. Phys., 1988, 16: 83-92

[19]

Kupershmidt B. A.. Mathematics of dispersive water waves. Comm. Math. Phys., 1985, 99: 51-73

AI Summary AI Mindmap
PDF

105

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/