The exact traveling wave solutions to two integrable KdV6 equations

Jibin Li , Yi Zhang

Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (2) : 179 -190.

PDF
Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (2) : 179 -190. DOI: 10.1007/s11401-012-0704-5
Article

The exact traveling wave solutions to two integrable KdV6 equations

Author information +
History +
PDF

Abstract

The exact explicit traveling solutions to the two completely integrable sixth-order nonlinear equations KdV6 are given by using the method of dynamical systems and Cosgrove’s work. It is proved that these traveling wave solutions correspond to some orbits in the 4-dimensional phase space of two 4-dimensional dynamical systems. These orbits lie in the intersection of two level sets defined by two first integrals.

Keywords

KdV6 equation / Exact traveling wave solution / Solitary wave solution / Quasi-periodic wave solution

Cite this article

Download citation ▾
Jibin Li, Yi Zhang. The exact traveling wave solutions to two integrable KdV6 equations. Chinese Annals of Mathematics, Series B, 2012, 33(2): 179-190 DOI:10.1007/s11401-012-0704-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Karsau-Kalkani A., Karsau A., Sakovich A. A new integrable generalization of the Korteweg-de Vries equation. J. Math. Phys., 2008, 49: 073516-073525

[2]

Kupershmidt B.. KdV6: an integrable system. Phys. Lett. A, 2008, 372: 2634-2639

[3]

Caudrey P. J., Dodd R. K., Gibbon J. D.. A new hierarchy of Korteweg-de Vries equations. Proc. R. Soc. Lond. A, 1976, 351: 407-422

[4]

Ramani A.. Lebowitz J.. Inverse scattering, ordinary differential equations of Painlevé-type and Hirota’s bilinear formalism, Fourth International Conference Collective Phenomena, 1981, New York: New York Academy of Sciences 54-67

[5]

Kaup D. J.. On the inverse scattering problem for cubic eigenvalue problems of the class φ xxx +6 x + 6 = λφ. Stud. Appl. Math., 1980, 62: 189-216

[6]

Kupershmidt B. A., Wilson G.. Modifying Lax equations and the second Hamiltonian structure. Invent. Math., 1981, 62: 403-436

[7]

Drinfeld V. G., Sokolov V. V.. Equations of Korteweg-de Vries type and simple Lie algebras. Sov. Math. Dokl., 1981, 23: 457-462

[8]

Satsuma J., Hirota R.. A coupled KdV equations is one case of the four-reduction of the KP hierarchy. J. Phys. Soc. Japan, 1982, 51: 3390-3397

[9]

Yao Y. Q., Zeng Y. B.. The bi-Hamiltonian structure and new solutions of KdV6 equation. Lett. Math. Phys., 2008, 86: 193-208

[10]

Yao Y. Q., Zeng Y. B.. Integrable Rosochatius deformations of higher-order constrained flows and the soliton hierarchy with self-consistent sources. J. Phys. A, 2008, 41: 295205

[11]

Wazwaz A. M.. The integrable KdV6 equations: multiple solitons and multiple singular soliton solutions. Appl. Math. Comput., 2008, 204: 963-972

[12]

Gómez C. A., Salas A.. The Cole-Hopf transformation and improved tanh-coth method applied to new integrable system (KdV6). Appl. Math. Comput., 2008, 204: 957-962

[13]

Ramani A., Grammaticos B., Willox R.. Bilinearize and solutions of the KdV6. Anal. Appl., 2008, 6: 401-412

[14]

Zhang Y., Cai X. N., Xu H. X.. A note on the integrable KdV6 equation: multiple soliton solutions and multiple singular soliton solutions. Appl. Math. Comput., 2009, 214: 1-3

[15]

Guckenheimer J., Holmes P. J.. Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, 1983, New York: Springer-Verlag

[16]

Cosgrove M. C.. Higher-order Painlevé equations in the polynomial class I, Bureau symbol P2. Stud. Appl. Math., 2000, 104: 1-65

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/