Relationship between the restricted AKNS flows and the restricted KdV flows

Ruguang Zhou

Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (2) : 191 -206.

PDF
Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (2) : 191 -206. DOI: 10.1007/s11401-012-0703-6
Article

Relationship between the restricted AKNS flows and the restricted KdV flows

Author information +
History +
PDF

Abstract

It is well-known that every member of the KdV hierarchy of equations can be obtained from the AKNS hierarchy of equations by imposing a simple reduction. The author finds that the reduction conditions of the potentials in the spectral problem can be replaced by adding additional eigenfunction equations to the spectral problem, and then shows that the restricted KdV flows, such as the Neumann system, the Garnier system and the generalized multicomponent Hénon-Hieles system, are a kind of special reductions of the restricted AKNS flows.

Keywords

The restricted AKNS flow / The restricted KdV flow / Nonlinearization of spectral problem / Reduction condition / Integrable Hamiltonian system

Cite this article

Download citation ▾
Ruguang Zhou. Relationship between the restricted AKNS flows and the restricted KdV flows. Chinese Annals of Mathematics, Series B, 2012, 33(2): 191-206 DOI:10.1007/s11401-012-0703-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cao C. W.. A cubic system which generates Bargmann potential and N-gap potential. Chin. Quart. J. Math., 1988, 3: 90-96

[2]

Cao C. W.. Nonlinearization of the Lax system for AKNS hierarchy. Sci. China Ser. A, 1990, 33: 528-536

[3]

Cao C. W., Geng X. G. Gu C. H. Classical integrable systems generated through nonlinearization of eigenvalue problems. Nonlinear Physics, Research Reports in Physics, 1990, Berlin: Springer 66-78

[4]

Gu Z. Q.. Complex confocal involutive systems associated with the solutions of the AKNS evolution equations. J. Math. Phys., 1991, 32: 1498-1504

[5]

Ragnisco O., Rauch-Wojciechowski S.. Restricted flows of the AKNS hierarchy. Inverse Problems, 1992, 8: 245-262

[6]

Antonowicz M., Rach-Wojciechowski S.. Constrained flows of integrable PDEs and bi-Hamiltonian structure of the Garnier system. Phys. Lett. A, 1990, 147: 455-462

[7]

Błaszak M., Basarab-Horwath P.. Bi-Hamiltonian formulation of a finite-dimensional integrable system reduced from a Lax hierarchy of the KdV. Phys. Lett. A, 1992, 171: 45-51

[8]

Błaszak M.. Miura map and bi-Hamiltonian formulation for restricted flows of the KdV hierarchy. J. Phys. A, Math. Gen., 1993, 26: 5985-5996

[9]

Antonowicz M., Rauch-Wojciechowski S.. Bi-Hamiltonian formulation of the Hénon-Heiles system and its multidimensional extensions. Phys. Lett. A, 1992, 163: 167-172

[10]

Antonowicz M., Rauch-Wojciechowski S.. Lax representation for restricted flows of the KdV hierarchy and for the Kepler problem. Phys. Lett. A, 1992, 171: 303-310

[11]

Ma W. X. Gu C. H. The confocal involutive system and the integrability of the nonlinearized Lax systems of AKNS hierarchy. Nonlinear Physics, Research Reports in Physics, 1990, Berlin: Springer 79-84

[12]

Ma W. X.. New finite dimensional integrable systems by symmetry constraint for the KdV equation. J. Phys. Soc. Jap., 1995, 6(4): 1085-1091

[13]

Qiao Z. J.. An involutive system and integrable C. Neumann system associated with the modified Korteweg-de Vries hierarchy. J. Math. Phys., 1994, 35(6): 2978-2982

[14]

Ma W. X., Strampp W.. An explicit symmetry constraint for the Lax pairs and the adjoint Lax pairs of AKNS systems. Phys. Lett. A, 1994, 185: 277-286

[15]

Ma W. X.. Symmetry constraint of MKdV equations by binary nonlinearization. Physica A, 1995, 219: 467-481

[16]

Zeng Y. B., Li Y. S.. On a general approach from infinite-dimensional integrable Hamiltonian systems to finite-dimensional ones (in Chinese). Adv. in Math., 1995, 24: 111-130

[17]

Li Y. S., Ma W. X.. Binary nonlinearization of AKNS spectral problem under higher-order symmetry constraints. Chaos, Solitons and Fractals, 2000, 11: 697-710

[18]

Zeng Y. B., Li Y. S.. The deduction of the Lax representation for constrained flows from the adjoint representation. J. Phys. A, 1993, 26: L273-L278

[19]

Ma W. X., Zhou R. G.. Adjoint symmetry constraints leading to binary nonlinearization. J. Nonlinear Math. Phys., 2002, 9: 106-126

[20]

Zhou R. G.. Nonlinearizations of spectral problems of the nonlinear Schrődinger equation and the realvalued mKdV equation. J. Math. Phys., 2007, 48: 013510

[21]

Zhou R. G.. Finite-dimensional integrable Hamiltonian systems related to the nonlinear Schrödinger equation. Stud. Appl. Math., 2009, 123(4): 311-335

[22]

Ragnisco O., Cao C. W., Wu Y. T.. On the relation of the stationary Toda equation and the symplectic maps. J. Phys. A, 1995, 28: 573-588

[23]

Zhou R. G.. The finite-band solution of Jaulent-Miodek equation. J. Math. Phys., 1997, 38: 2335-2546

[24]

Cao C. W., Wu Y. T., Geng X. G.. Relation between the Kadomtsev-Petviashvili equation and the confocal involutive system. J. Math. Phys., 1999, 40: 3948-3970

[25]

Ablowitz M. J., Kaup D. J., Newell A. C. Nonlinear-evolution equations of physical significance. Phys. Rev. Letts., 1973, 31(2): 125-127

[26]

Ablowitz M., Segur H.. Solitons and Inverse Scattering Transformation, 1981, Philadelphia: SIAM

[27]

Ward R. S.. Integrable and solvable systems. and relations among them, Phil. Trans. R. Soc. Lond. A, 1985, 315: 451-457

[28]

Aboliwtz M. J., Chakravarty S., Halburd R. G.. Integrable systems and reductions of the self-dual Yang-Mills equations. J. Math. Phys., 2003, 44: 3147-3173

[29]

Mikhailov A. V.. The reduction problem and the inverse scattering method. Physica D, 1981, 3: 73-117

[30]

Lombardo S., Mikhailov A. V.. Reductions of integrable equations: dihedral group. J. Phys. A, 2004, 37: 7727-7742

[31]

Magri F., Morosi C., Ragnisco O.. Reduction techniques for infinite dimensional Hamiltonian systems: some ideas and applications. Commun. Math. Phys., 1985, 99: 115-140

[32]

Wang Z. H., Liu B. C., Song W. Y.. The reduction and the classification of integrable systems (in Chinese). J. Henan Normal Univ. (Natural Science), 1992, 20(2): 21-26

[33]

Chen D. Y.. Introduction to Soliton, 2006, Beijing: Science Press

[34]

Hénon M., Heiles C.. The applicability of the third integral of motion: some numerical experiments. Astron. J., 1964, 69: 73-79

[35]

Błaszak M., Rauch-Wojciechowski S.. A generalized Hénon-Heiles system and related integrable Newton equations. J. Math. Phys., 1994, 35(4): 1693-1709

AI Summary AI Mindmap
PDF

181

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/