Loop algebras and bi-integrable couplings

Wenxiu Ma

Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (2) : 207 -224.

PDF
Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (2) : 207 -224. DOI: 10.1007/s11401-012-0702-7
Article

Loop algebras and bi-integrable couplings

Author information +
History +
PDF

Abstract

A class of non-semisimple matrix loop algebras consisting of triangular block matrices is introduced and used to generate bi-integrable couplings of soliton equations from zero curvature equations. The variational identities under non-degenerate, symmetric and ad-invariant bilinear forms are used to furnish Hamiltonian structures of the resulting bi-integrable couplings. A special case of the suggested loop algebras yields nonlinear bi-integrable Hamiltonian couplings for the AKNS soliton hierarchy.

Keywords

Loop algebra / Bi-integrable coupling / Zero curvature equation / Symmetry / Hamiltonian structure

Cite this article

Download citation ▾
Wenxiu Ma. Loop algebras and bi-integrable couplings. Chinese Annals of Mathematics, Series B, 2012, 33(2): 207-224 DOI:10.1007/s11401-012-0702-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ablowitz M. J., Kaup D. J., Newell A. C. The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math., 1974, 53: 249-315

[2]

Bluman G. W., Cole J. D.. Similarity Methods for Differential Equations. Applied Mathematical Sciences, 13, 1974, New York, Heidelberg: Springer-Verlag

[3]

Drinfel’d V. G., Sokolov V. V.. Equations of Korteweg-de Vries type and simple Lie algebras. Soviet Math. Dokl., 1981, 23: 457-462

[4]

Fuchssteiner B.. Application of hereditary symmetries to nonlinear evolution equations. Nonlinear Analysis TMA, 1979, 3: 849-862

[5]

Fuchssteiner B., Fokas A. S.. Symplectic structures, their Bcklund transformations and hereditary symmetries. Phys. D, 1981, 4: 47-66

[6]

Lax P.. Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl. Math., 1968, 21: 467-490

[7]

Li Z., Dong H. H.. Two integrable couplings of the Tu hierarchy and their Hamiltonian structures. Comput. Math. Appl., 2008, 55: 2643-2652

[8]

Ma W. X.. A new hierarchy of Liouville integrable generalized Hamiltonian equations and its reduction (in Chinese). Chin. Ann. Math., 1992, 13A(1): 115-123

[9]

Ma W. X., Fuchssteiner B.. Integrable theory of the perturbation equations. Chaos Solitons Fractals, 1996, 7: 1227-1250

[10]

Ma W. X.. Integrable couplings of soliton equations by perturbations I-A general theory and application to the KdV hierarchy. Methods Appl. Anal., 2000, 7: 21-55

[11]

Ma W. X.. Enlarging spectral problems to construct integrable couplings of soliton equations. Phys. Lett. A, 2003, 316: 72-76

[12]

Ma W. X.. Scott A.. Integrability. Encyclopedia of Nonlinear Science, 2005, New York: Taylor & Francis 250-253

[13]

Ma W. X.. Integrable couplings of vector AKNS soliton equations. J. Math. Phys., 2005, 46: 033507

[14]

Ma W. X.. A discrete variational identity on semi-direct sums of Lie algebras. J. Phys. A, Math. Theoret., 2007, 40: 15055-15069

[15]

Ma W. X.. A Hamiltonian structure associated with a matrix spectral problem of arbitrary-order. Phys. Lett. A, 2007, 367: 473-477

[16]

Ma W. X.. Multi-component bi-Hamiltonian Dirac integrable equations. Chaos Solitons Fractals, 2009, 39: 282-287

[17]

Ma W. X.. Variational identities and applications to Hamiltonian structures of soliton equations. Nonlinear Anal. TMA, 2009, 71: e1716-e1726

[18]

Ma W. X.. Ma W. X., Hu X. B., Liu Q. P.. Variational identities and Hamiltonian structures. Nonlinear and Modern Mathematical Physics, 2010, New York: AIP 1-27

[19]

Ma W. X.. Nonlinear continuous integrable Hamiltonian couplings. Appl. Math. Comput., 2011, 217: 7238-7244

[20]

Ma W. X., Chen M.. Hamiltonian and quasi-Hamiltonian structures associated with semi-direct sums of Lie algebras. J. Phys. A, Math. Gen., 2006, 39: 10787-10801

[21]

Ma W. X., Fan E. G.. Linear superposition principle applying to Hirota bilinear equations. Comput. Math. Appl., 2011, 61: 950-959

[22]

Ma W. X., Gao L.. Coupling integrable couplings. Modern Phys. Lett. B, 2009, 23: 1847-1860

[23]

Ma W. X., Guo F. K.. Lax representations and zero curvature representations by Kronecker product. Int. J. Theor. Phys., 1997, 36: 697-704

[24]

Ma W. X., Strampp W.. Bilinear forms and Bäcklund transformations of the perturbation systems. Phys. Lett. A, 2005, 341: 441-449

[25]

Ma W. X., Xu X. X., Zhang Y. F.. Semi-direct sums of Lie algebras and continuous integrable couplings. Phys. Lett. A, 2006, 351: 125-130

[26]

Ma W. X., Xu X. X., Zhang Y. F.. Semi-direct sums of Lie algebras and discrete integrable couplings. J. Math. Phys., 2006, 47: 053501

[27]

Ma W. X., Zhang Y.. Component-trace identities for Hamiltonian structures. Appl. Anal., 2010, 89: 457-472

[28]

Ma W. X., Zhu Z. N.. Constructing nonlinear discrete integrable Hamiltonian couplings. Comput. Math. Appl., 2010, 60: 2601-2608

[29]

Magri F.. A simple model of the integrable Hamiltonian equation. J. Math. Phys., 1978, 19: 1156-1162

[30]

Olver P. J.. Evolution equations possessing infinitely many symmetries. J. Math. Phys., 1977, 18: 1212-1215

[31]

Sakovich S. Y.. On integrability of a (2 + 1)-dimensional perturbed KdV equation. J. Nonlinear Math. Phys., 1998, 5: 230-233

[32]

Sakovich S. Y.. Coupled KdV equations of Hirota-Satsuma type. J. Nonlinear Math. Phys., 1999, 6: 255-262

[33]

Tu G. Z.. On Liouville integrability of zero-curvature equations and the Yang hierarchy. J. Phys. A, Math. Gen., 1989, 22: 2375-2392

[34]

Xia T. C., Chen X. H., Chen D. Y.. A new Lax integrable hierarchy. N Hamiltonian structure and its integrable couplings system, Chaos Solitons Fractals, 2005, 23: 451-458

[35]

Xia T. C., Yu F. J., Zhang Y.. The multi-component coupled Burgers hierarchy of soliton equations and its multi-component integrable couplings system with two arbitrary functions. Phys. A, 2004, 343: 238-246

[36]

Xu X. X.. Integrable couplings of relativistic Toda lattice systems in polynomial form and rational form, their hierarchies and bi-Hamiltonian structures. J. Phys. A, Math. Theoret., 2009, 42: 395201

[37]

Yu F. J., Li L.. A new method to construct the integrable coupling system for discrete soliton equation with the Kronecker product. Phys. Lett. A, 2008, 372: 3548-3554

[38]

Yu Y. J., Zhang H. Q.. Hamiltonian structure of the integrable couplings for the multicomponent Dirac hierarchy. Appl. Math. Comput., 2008, 197: 828-835

[39]

Zakharov V. E., Shabat A. B.. A scheme for generating the nonlinear equations of mathematical physics by the method of the inverse scattering problem I. Funct. Anal. Appl., 1974, 8: 226-235

[40]

Zhang Y. F., Feng B. L.. A few Lie algebras and their applications for generating integrable hierarchies of evolution types. Commun. Nonlinear Sci. Numer. Simul., 2011, 16: 3045-3061

[41]

Zhang Y. F., Tam H. M.. Applications of the Lie algebra gl(2). Modern Phys. Lett. B, 2009, 23: 1763-1770

[42]

Zhang Y. F., Tam H.W.. Coupling commutator pairs and integrable systems. Chaos Solitons Fractals, 2009, 39: 1109-1120

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/