Equivalent and nonequivalent barotropic modes for rotating stratified flows

Man Jia , Senyue Lou , Fei Huang

Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (2) : 247 -258.

PDF
Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (2) : 247 -258. DOI: 10.1007/s11401-012-0700-9
Article

Equivalent and nonequivalent barotropic modes for rotating stratified flows

Author information +
History +
PDF

Abstract

All the possible equivalent barotropic (EB) laminar solutions are firstly explored, and all the possible non-EB elliptic circulations and hyperbolic laminar modes of rotating stratified fluids are discovered in this paper. The EB circulations (including the vortex streets and hurricane like vortices) possess rich structures, because either the arbitrary solutions of arbitrary nonlinear Poisson equations can be used or an arbitrary two-dimensional stream function is revealed which may be broadly applied in atmospheric and oceanic dynamics, plasma physics, astrophysics and so on. The discovery of the non-EB modes disproves a known conjecture.

Keywords

Rotating stratified flows / Equivalent barotropic modes / Nonequivalent barotropic modes

Cite this article

Download citation ▾
Man Jia, Senyue Lou, Fei Huang. Equivalent and nonequivalent barotropic modes for rotating stratified flows. Chinese Annals of Mathematics, Series B, 2012, 33(2): 247-258 DOI:10.1007/s11401-012-0700-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

McWilliams J. C., Weiss J. B., Yavneh I.. Anisotropy and coherent structures in planetary turbulence. Science, 1994, 264: 410-413

[2]

Hoppinger E. J., Browand F. K.. Vortex solitary waves in a rotating, turbulent flow. Nature, 1982, 295: 393-395

[3]

Couder Y., Basdevant C.. Experimental and numerical study of vortex couples in two-dimensional flows. J. Fluid Mech., 1986, 173: 225-251

[4]

van Heijst G. J. F., Flór J. B.. Dipole formation and collisions in a stratified fluid. Nature, 1989, 340: 212-214

[5]

Wen C. Y., Wu W. J., Chen H.. Shock-vortex interactions in a soap film. Shock Waves, 2008, 18: 185-191

[6]

Meyer A., Kim I., Wu X. L.. Vortex street behind an oscillating wire on a soap film, 2009 American Physical Society March Meeting, 2009, Pittsburgh, Pennsylvania: American Physical Society

[7]

van Heijst G. J. F., Kloosterziel R. C.. Tripolar vortices in a rotating fluid. Nature, 1989, 338: 569-570

[8]

Nguyen Duc J. M., Sommeria J.. Experimental characterization of steady two-dimensional vortex couples. J. Fluid Mech., 1988, 192: 175-192

[9]

Appel A.. After Katrina: tracking the toxic flood. Nature, 2005, 437: 462-463

[10]

Lou S. Y., Jia M., Tang X. Y. Vortices, circumfluence, symmetry groups, and Darboux transformations of the (2+1)-dimensional Euler equation. Phys. Rev. E, 2007, 75: 056318

[11]

Luo D. H., Lupo A. R., Wan H.. Dynamics of eddy-driven low-frequency dipole modes, part I: a simple model of North Atlantic oscillations. J. Atmos. Sci., 2007, 64: 3-28

[12]

Luo D. H., Gong T. T., Diao Y. N.. Dynamics of eddy-driven low-frequency dipole modes, part IV: planetary and synoptic wave-breaking processes during the NAO life cycle. J. Atmos. Sci., 2008, 65: 737-765

[13]

Huang F., Tang X. Y., Lou S. Y. Evolution of dipole-type blocking life cycles: analytical diagnoses and observations. J. Atmos. Sci., 2007, 64: 52-73

[14]

Tang X. Y., Zhao J., Huang F. Monopole blocking governed by a modified KdV type equation. Stud. Appl. Math., 2009, 122: 295-304

[15]

Colantonio J. R., Vermot J., Wu D. The dynein regulatory complex is required for ciliary motility and otolith biogenesis in the inner ear. Nature, 2009, 457: 205-209

[16]

Titov D. V., Taylor F. W., Svedhem H. Atmospheric structure and dynamics as the cause of ultraviolet markings in the clouds of Venus. Nature, 2008, 456: 620-623

[17]

Barnett R., Refael G., Porter M. A. Vortex lattice locking in rotating two-component Bose-Einstein condensates. New J. Phys., 2008, 10: 043030

[18]

Abo-Shaeer J. R., Raman C., Vogels J. M. Observation of vortex lattices in Bose-Einstein condensates. Science, 2001, 292: 476-479

[19]

Dyudina U. A., Ingersoll A. P., Ewald S. P. Dynamics of Saturns south polar vortex. Science, 2008, 319: 1801-1804

[20]

Muijres F. T., Johansson L. C., Barfield R. Leading-edge vortex improves lift in slow-flying bats. Science, 2008, 319: 1250-1253

[21]

Zhao X., Quinto-Su P. A., Ohl C. D.. Dynamics of magnetic bubbles in acoustic and magnetic fields. Phys. Rev. Lett., 2009, 102: 024501

[22]

Dahl E. K., Babaev E., Sudbo A.. Unusual states of vortex matter in mixtures of Bose-Einstein condensates on rotating optical lattices. Phys. Rev. Lett., 2008, 101: 255301

[23]

Driscoll C. F., Fine K. S.. Experiments on vonex dynamics in pure electron plasmas. Phys. Fluids B, 1990, 2: 1359-1366

[24]

Huang X. P., Driscoll C. F.. Relaxation of 2D turbulence to a metaequilibrium near the minimum enstrophy state. Phys. Rev. Lett., 1994, 72: 2187-2190

[25]

Driscoll C. F., Jin D. Z., Schecter D. A. Vortex dynamics of 2D electron plasmas. Physica C, 2002, 369: 21-27

[26]

Lilly D.. Stratified turbulence and the Mesoscale variability of the atmosphere. J. Atmos. Sci., 1983, 40: 749-761

[27]

Sun C.. A baroclinic laminar state for rotating stratified flows. J. Atmos. Sci., 2008, 65: 2740-2747

[28]

Saccomandi G.. Some exact pseudo-plane solutions of the first kind for the Navier-Stokes equations. Z. Angew. Math. Phys., 1994, 45: 978-985

[29]

Sun C.. The columnar structure in stratified geostrophic flows. Geophys. Astrophys. Fluid Dyn., 2001, 95: 55-65

[30]

Ting A. C., Chen H. H., Lee Y. C.. Exact vortex solutions of two-dimensional guiding-center plasmas. Phys. Rev. Lett., 1984, 53: 1348-1351

[31]

Ting A. C., Chen H. H., Lee Y. C.. Exact solutions of a nonlinear boundary value problem: the vortices of the two-dimensional sinh-Poisson equation. Physica D, 1987, 26: 37-66

[32]

Mallier R., Maslowe S. A.. A row of counter-rotating vortices. Phys. Fluids A, 1993, 5: 1074-1075

[33]

Pasmanter R. A.. Long lived vortices in 2D viscous flows, most probable states of inviscid 2D flows and a soliton equation. Phys. Fluids, 1994, 6: 1236-1241

[34]

Chow K. W., Tsang S. C., Mak C. C.. Another exact solution for two dimensional, inviscid sinh Poisson vortex arrays. Phys. Fluids, 2003, 15: 2437-2439

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/