Generalized Cauchy matrix approach for lattice Boussinesq-type equations

Songlin Zhao , Dajun Zhang , Ying Shi

Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (2) : 259 -270.

PDF
Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (2) : 259 -270. DOI: 10.1007/s11401-012-0699-y
Article

Generalized Cauchy matrix approach for lattice Boussinesq-type equations

Author information +
History +
PDF

Abstract

The authors generalize the Cauchy matrix approach to get exact solutions to the lattice Boussinesq-type equations: lattice Boussinesq equation, lattice modified Boussinesq equation and lattice Schwarzian Boussinesq equation. Some kinds of solutions including soliton solutions, Jordan block solutions and mixed solutions are obtained.

Keywords

Lattice Boussinesq-type equations / Generalized Cauchy matrix approach / Exact solutions

Cite this article

Download citation ▾
Songlin Zhao, Dajun Zhang, Ying Shi. Generalized Cauchy matrix approach for lattice Boussinesq-type equations. Chinese Annals of Mathematics, Series B, 2012, 33(2): 259-270 DOI:10.1007/s11401-012-0699-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ablowitz M. J., Ladik F. J.. A nonlinear difference scheme and inverse scattering. Stud. Appl. Math., 1976, 55: 213-229

[2]

Ablowitz M. J., Ladik F. J.. On the solution of a class of nonlinear partial difference equations. Stud. Appl. Math., 1977, 57: 1-12

[3]

Hirota R.. Nonlinear partial difference equations I. J. Phys. Soc. Japan, 1977, 43: 1424-1433

[4]

Hirota R.. Nonlinear partial difference equations II. J. Phys. Soc. Japan, 1977, 43: 2074-2078

[5]

Hirota R.. Nonlinear partial difference equations III. J. Phys. Soc. Japan, 1977, 43: 2079-2086

[6]

Hirota R.. Nonlinear partial difference equations. IV. J. Phys. Soc. Japan, 1978, 45: 321-332

[7]

Hirota R.. Nonlinear partial difference equations. V. J. Phys. Soc. Japan, 1979, 46: 312-319

[8]

Nijhoff F. W., Quispel G. R. W., Capel H. W.. Direct linearization of nonlinear difference-difference equations. Phys. Lett. A, 1983, 97: 125-128

[9]

Quispel G. R. W., Nijhoff F. W., Capel H. W., van der Linden J.. Linear integral equations and nonlinear difference-difference equations. Physica A, 1984, 125: 344-380

[10]

Nijhoff F. W., Papageorgiou V. G., Capel H. W., Quispel G. R. W.. The lattice Gelfand-Dikii hierarchy. Inverse Problem, 1992, 8: 597-621

[11]

Nijhoff F. W.. Bobenko A. I., Seiler R.. Discrete Painlevé equations and symmetry reduction on the lattice, Discrete Integrable Geometry and Physics, 1999, Oxford: Clarendon Press 209-234

[12]

Walker, A. J., Similarity reductions and integrable lattice equations, Ph. D. thesis, Leeds University, 2001.

[13]

Maruno K., Kajiwara K.. The discrete potential Boussinesq equation and its multisoliton solutions. Appl. Anal., 2010, 89(4): 593-609

[14]

Tongas A., Nijhoff F. W.. The Boussinesq integrable system: compatible lattice and continuum structures. Glasg. Math. J., 2005, 47: 205-219

[15]

Hietarinta J., Zhang D. J.. Multisoliton solutions to the lattice Boussinesq equation. J. Math. Phys., 2010, 51: 033505

[16]

Hietarinta J.. Boussinesq-like multi-component lattice equations and multi-dimensional consistency. J. Phys. A, 2011, 44: 165204

[17]

Hietarinta J., Zhang D. J.. Soliton taxonomy for a modification of the lattice Boussinesq equation. Symmetry Integrability Geom. Methods Appl., 2011, 7: 061

[18]

Zhang, D. J., Zhao, S. L. and Nijhoff, F. W., Direct linearization of an extended lattice BSQ system, 2011. arXiv:1112.0525v1

[19]

Atkinson J., Hietarinta J., Nijhoff F.. Seed and soliton solutions for Adler’s lattice equation. J. Phys. A, 2007, 40: F1-F8

[20]

Atkinson J., Hietarinta J., Nijhoff F.. Soliton solutions for Q3. J. Phys. A, 2008, 41: 142001

[21]

Butler S., Joshi N.. An inverse scattering transform for the lattice potential KdV equation. Inverse Problem, 2010, 26: 115012

[22]

Hietarinta J., Zhang D. J.. Soliton solutions for ABS lattice equations, II, Casoratians and bilinearization. J. Phys. A, 2009, 42: 404006

[23]

Zhang D. J., Hietarinta J.. Generalized solutions for the H1 model in ABS list of lattice equations. Nonl. Mod. Math. Phys: Proceedings of the First International Workshop, AIP Conference Proceedings, 2010, 1212: 154-161

[24]

Shi Y., Zhang D. J.. Rational solutions of the H3 and Q1 models in the ABS lattice list. Symmetry Integrability Geom. Methods Appl., 2011, 7: 046

[25]

Nijhoff F., Atkinson J., Hietarinta J.. Soliton solutions for ABS lattice equations, I, Cauchy matrix approach. J. Phys. A, 2009, 42: 404005

[26]

Nijhoff F., Atkinson J.. Elliptic N-soliton solutions of ABS lattice equations. Inter. Math. Res. Notices, 2010, 20: 3837-3895

[27]

Zhang, D. J. and Zhao, S. L., Generalized Cauchy matrix approach for ABS lattice equations, preprint.

[28]

Zhang, D. J. and Hietarinta, J., Generalized double-Wronskian solutions to the nonlinear Schrödinger equation, preprint.

[29]

Zhang, D. J., Notes on solutions in Wronskian form to soliton equations: KdV-type, 2006. arXiv: nlin.SI/0603008

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/