Fermionization of Sharma-Tasso-Olver system

Biwei Yao , Senyue Lou

Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (2) : 271 -280.

PDF
Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (2) : 271 -280. DOI: 10.1007/s11401-012-0698-z
Article

Fermionization of Sharma-Tasso-Olver system

Author information +
History +
PDF

Abstract

By applying the fermionization approach, the inverse version of the bosonization approach, to the Sharma-Tasso-Olver (STO) equation, three simple supersymmetric extensions of the STO equation are obtained from the Painlevé analysis. Furthermore, some types of special exact solutions to the supersymmetric extensions are obtained.

Keywords

STO equation / Supersymmetric integrable systems / Fermionization approach

Cite this article

Download citation ▾
Biwei Yao, Senyue Lou. Fermionization of Sharma-Tasso-Olver system. Chinese Annals of Mathematics, Series B, 2012, 33(2): 271-280 DOI:10.1007/s11401-012-0698-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Oguz O., Yazici D.. Multiple local Lagrangians for n-component super-Korteweg-de Vries-type bi-Hamiltonian systems. Int. J. Mod. Phys. A, 2010, 25: 1069-1078

[2]

Kupershmidt B.. A super Korteweg-de Vries equation: an integrable system. Phys. Lett. A, 1984, 102: 213-215

[3]

Tian K., Liu Q. P.. A supersymmetric Sawada-Kotera equation. Phys. Lett. A, 2009, 373: 1807-1810

[4]

Hariton A. J.. Supersymmetric extension of the scalar Born-Infeld equation. J. Phys. A, 2006, 39: 7105-7114

[5]

Labelle P., Mathieu P.. A new N = 2 supersymmetric Korteweg-de Vries equation. J. Math. Phys., 1991, 32: 923-927

[6]

Mathieu P.. Supersymmetric extension of the Korteweg-de Vries equation. J. Math. Phys., 1988, 28: 2499-2506

[7]

Mathieu P.. The Painlevé property for fermionic extensions of the Korteweg-de Vries equation. Phys. Lett. A, 1988, 128: 169-171

[8]

Mathieu P.. Superconformal algebra and supersymmetric Korteweg-de Vries equation. Phys. Lett. B, 1988, 203: 287-291

[9]

Carstea A. S.. Extension of the bilinear formalism to supersymmetric KdV-type equations. J. Nonlinearity, 2000, 13: 1645-1656

[10]

Liu Q. P., Popowicz Z., Tian K.. Supersymmetric reciprocal transformation and its applications. J. Math. Phys., 2010, 51: 093511

[11]

de Vecchia P., Ferrara S.. Classical solutions in two-dimensional supersymmetric field theories. J. Nuclear Physics B, 1977, 130: 93-104

[12]

Brunelli J. C., Das A.. The supersymmetric two boson hierarchies. Phys. Lett. B, 1994, 337: 303-307

[13]

Gao X. N., Lou S. Y.. Bosonization of supersymmetric KdV equation. Phys. Lett. B, 2012, 707: 209-215

[14]

Sharma A. S., Tasso H.. Connection Between Wave Envelope and Explicit Solution of a Nonlinear Dispersive Equation, 1977, Garching: MPI fur Plasmaphysik

[15]

Hereman W., Banerjee P. P., Korpel A. Exact solitary wave solutions of nonlinear evolution and wave equations using a direct algebraic method. J. Phys. A, 1986, 19: 607-628

[16]

Olver P. J.. Evolution equations possessing infinitely many symmetries. J. Math. Phys., 1977, 18: 1212-1215

[17]

Wang S., Tang X. Y., Lou S. Y.. Soliton fission and fusion: Burgers equation and Sharma-Tasso-Olver equation. Chaos Solitons Fractals, 2004, 21: 231-239

[18]

Lou S. Y.. Dromion-like structures in a (3+1)-dimensional KdV type equation. J. Phys. A, 1996, 29: 5989

[19]

Lian Z. J., Lou S. Y.. Symmetries and exact solutions of the Sharma-Tass-Olver equation. Nonlinear Analysis, 2005, 63: e1167-e1177

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/