Symmetry reduction and exact solutions of a hyperbolic Monge-Ampère equation

Zhongzhou Dong , Yong Chen , Dexing Kong , Zenggui Wang

Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (2) : 309 -316.

PDF
Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (2) : 309 -316. DOI: 10.1007/s11401-012-0696-1
Article

Symmetry reduction and exact solutions of a hyperbolic Monge-Ampère equation

Author information +
History +
PDF

Abstract

By means of the classical symmetry method, a hyperbolic Monge-Ampère equation is investigated. The symmetry group is studied and its corresponding group invariant solutions are constructed. Based on the associated vector of the obtained symmetry, the authors construct the group-invariant optimal system of the hyperbolic Monge-Ampère equation, from which two interesting classes of solutions to the hyperbolic Monge-Ampère equation are obtained successfully.

Keywords

Symmetry reduction / Monge-Ampère equation / Exact solutions

Cite this article

Download citation ▾
Zhongzhou Dong, Yong Chen, Dexing Kong, Zenggui Wang. Symmetry reduction and exact solutions of a hyperbolic Monge-Ampère equation. Chinese Annals of Mathematics, Series B, 2012, 33(2): 309-316 DOI:10.1007/s11401-012-0696-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tynitskii D. V.. The Cauchy problem for a hyperbolic Monge-Amp`ere equation. Mathematical Notes, 1992, 51: 582-589

[2]

Kong D. X., Liu K. F., Wang Z. G.. Hyperbolic mean curvature flow: evolution of plane curves. Acta Math. Sci., 2009, 29B(3): 493-514

[3]

Kong D. X., Hu H. R.. Geometric approach for finding exact solutions to nonlinear partial differential equations. Phys. Lett. A, 1998, 246: 105-112

[4]

Olver P. J.. Applications of Lie Groups to Differential Equations, 1993, New York: Springer-Verlag

[5]

Bluman G. W., Anco S. C.. Symmetry and Integration Methods for Differential Equations, 2002, New York: Springer-Verlag

[6]

Clarkson P. A., Kruskal M.. New similarity reductions of the Boussinesq equation. J. Math. Phys., 1989, 30: 2201-2213

[7]

Ovsiannikov L. V.. Group Analysis of Differential Equations, 1982, New York: Academic Press

[8]

Lou S. Y., Ma H. C.. Non-Lie symmetry groups of (2+1)-dimensional nonlinear systems obtained from a simple direct method. J. Phys. A, Math. Gen., 2005, 38: L129-L137

[9]

Ma H. C.. A simple method to generate Lie point symmetry groups of the (3+1)-dimensional Jimbo-Miwa equation. Chin. Phys. Lett., 2005, 22: 554-557

[10]

Ma H. C.. Generating Lie point symmetry groups of (2+1)-dimensional Broer-Kaup equation via a simple direct method. Commun. Theor. Phys., 2005, 43: 1047-1052

[11]

Dong Z. Z., Chen Y., Wang L.. Similarity reductions of (2+1)-dimensional multi-component Broer Kaup system. Commun. Theor. Phys., 2008, 50: 803-808

[12]

Hu X. R., Chen Y.. Two-dimensional symmetry reduction of (2+1)-dimensional nonlinear Klein-Gorden equation. Appl. Math. Comp., 2009, 215: 1141-1145

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/