Proper submanifolds in product manifolds

Hongbing Qiu , Yuanlong Xin

Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (1) : 1 -16.

PDF
Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (1) : 1 -16. DOI: 10.1007/s11401-011-0695-7
Article

Proper submanifolds in product manifolds

Author information +
History +
PDF

Abstract

The authors obtain various versions of the Omori-Yau’s maximum principle on complete properly immersed submanifolds with controlled mean curvature in certain product manifolds, in complete Riemannian manifolds whose k-Ricci curvature has strong quadratic decay, and also obtain a maximum principle for mean curvature flow of complete manifolds with bounded mean curvature. Using the generalized maximum principle, an estimate on the mean curvature of properly immersed submanifolds with bounded projection in N 1 in the product manifold N 1 × N 2 is given. Other applications of the generalized maximum principle are also given.

Keywords

Calabi-Chern problem / Omori-Yau maximum principle / Properly immersed submanifold / Mean curvature flow / Stochastic completeness

Cite this article

Download citation ▾
Hongbing Qiu, Yuanlong Xin. Proper submanifolds in product manifolds. Chinese Annals of Mathematics, Series B, 2012, 33(1): 1-16 DOI:10.1007/s11401-011-0695-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alias L. J., Bessa G. P., Dajczer M.. The mean curvature of cylindrically bounded submanifolds. Math. Ann., 2009, 345: 367-376

[2]

Alias L. J., Dajczer M.. Constant mean curvature hypersurfaces in warped product spaces. Proc. Edinb. Math. Soc., 2007, 50: 511-526

[3]

Calabi E.. An extension of E. Hopf’s maximum principle with an application to Riemannian geometry. Duke Math. J., 1958, 25: 45-56

[4]

Calabi, E., Problems in differential geometry, Proceedings of the United States-Japan Seminar in Differential Geometry, S. Kobayashi and J. Jr. Eells (eds.), Kyoto, Japan, 1965, Nippon Hyoronsha, Tokyo, 1966.

[5]

Chen Q., Xin Y. L.. A generalized maximum principle and its applications in geometry. Amer. J. Math., 1992, 114: 355-366

[6]

Cheng S. Y., Yau S. T.. Differential equations on Riemannian manifolds and their geometric applications. Comm. Pure Appl. Math., 1975, 28: 333-354

[7]

Chern S. S.. The geometry of G-structures. Bull. Amer. Math. Soc., 1966, 72: 167-219

[8]

Colding T. H., Minicozzi W. P. II The Calabi-Yau conjectures for embedded surfaces. Ann. Math., 2008, 167: 211-243

[9]

Ecker K., Huisken G.. Mean curvature evolution of entire graphs. Ann. of Math., 1989, 130: 453-471

[10]

Jorge L., Xavier F.. A complete minimal surface in R3 between two parallel planes. Ann. of Math., 1980, 112: 203-206

[11]

Kenmotsu K., Xia C. Y.. Hadamard-Frankel type theorems for manifolds with partially positive curvature. Pacific J. Math., 1996, 176: 129-139

[12]

Nadirashvili N.. Hadamard’s and Calabi-Yau’s conjectures on negatively curved and minimal surfaces. Invent. Math., 1996, 126: 457-465

[13]

O’Neill B.. Semi-Riemannian Geometry, 1983, New York: Academic Press

[14]

Omori H.. Isometric immersion of Riemannian manifolds. J. Math. Soc. Japan., 1967, 19: 205-214

[15]

Pigola S., Rigoli M., Setti A.. A remark on the maximm principle and stochastic completeness. Proc. Amer. Math. Soc., 2003, 131: 1283-1288

[16]

Pigola S., Rigoli M., Setti A.. Maximum principle on Riemannian manifolds and applications. Mem. Amer. Math. Soc., 2005, 174(822): 99

[17]

Shen Z.. On complete manifolds of nonnegative kth-Ricci curvature. Trans. Amer. Math. Soc., 1993, 338: 289-310

[18]

Wu H.. Manifolds of partially positve curvature. Indiana Univ. Math. J., 1987, 36: 525-548

[19]

Xin Y. L.. Geometry of Harmonic Maps, 1994, Boston: Birkhäuser

[20]

Xin Y. L.. Mean curvature flow with bounded Gauss image. Results in Math., 2011, 59: 415-436

[21]

Yau S. T.. Harmonic function on complete Riemannian manifolds. Comm. Pure. Appl. Math., 1975, 28: 201-228

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/