Fujita-Liouville type theorem for coupled fourth-order parabolic inequalities

Zhaoxin Jiang , Sining Zheng

Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (1) : 107 -112.

PDF
Chinese Annals of Mathematics, Series B ›› 2012, Vol. 33 ›› Issue (1) : 107 -112. DOI: 10.1007/s11401-011-0688-6
Article

Fujita-Liouville type theorem for coupled fourth-order parabolic inequalities

Author information +
History +
PDF

Abstract

This paper deals with a coupled system of fourth-order parabolic inequalities |u| t ≥ −Δ2 u + |v| q, |v| t ≥ −Δ2 v + |u| p in $\mathbb{S} = \mathbb{R}^n \times \mathbb{R}^ +$ with p, q > 1, n ≥ 1. A Fujita-Liouville type theorem is established that the inequality system does not admit nontrivial nonnegative global solutions on $\mathbb{S}$ whenever $\tfrac{n}{4} \leqslant \max \left( {\tfrac{{p + 1}}{{pq - 1}} - \tfrac{{q + 1}}{{pq - 1}}} \right)$. Since the general maximum-comparison principle does not hold for the fourth-order problem, the authors use the test function method to get the global non-existence of nontrivial solutions.

Keywords

Fujita exponent / Liouville type theorem / Higher-order parabolic inequalities / Test function method

Cite this article

Download citation ▾
Zhaoxin Jiang, Sining Zheng. Fujita-Liouville type theorem for coupled fourth-order parabolic inequalities. Chinese Annals of Mathematics, Series B, 2012, 33(1): 107-112 DOI:10.1007/s11401-011-0688-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Peletier L., Troy W.. Spatial Patterns: Higher Order Models in Physics and Mechanics, 2001, Boston, Berlin: Birkhäuser

[2]

Galaktionov V. A., Pohozaev S.. Existence and blow-up for higher-order semilinear parabolic equations: majorizing order-preserving operators. Indiana Univ. Math. J., 2002, 51: 1321-1338

[3]

Galaktionov V. A., Pohozaev S.. Blow-up and critical exponents for parabolic equations with nondivergent operators: dual porous medium and thin film operators. J. Evol. Eq., 2006, 6: 45-69

[4]

Galaktionov V. A., Willians J.. Blow-up in a fourth-order semilinear parabolic equation from explosion-convection theory. European J. Appl. Math., 2003, 14: 745-764

[5]

Pang P., Sun F., Wang M.. Existence and non-existence of global solutions for a higher-order semilinear parabolic system. Indiana Univ. Math. J., 2006, 51: 1113-1134

[6]

Fujita H.. On the blowing up of solutions of the Cauchy problem for u t = Δu + u 1+α. J. Fac. Sci. Univ. Tokyo, Sect. IA, Math., 1966, 13: 109-124

[7]

Hayakawa K.. On nonexistence of global solutions of some semilinear parabolic differential equations. Proc. Japan Acad. Ser. A, 1973, 49: 503-505

[8]

Weissler F. B.. Existence and non-existence of global solutions for semilinear equatiuon. Israel J. Math., 1981, 6: 29-40

[9]

Egorov Y. V., Galaktionov V. A., Kondratiev V. A., Pohozaev S.. On the necessary conditions of global existence to a quasilinear inequality in the half-space. C. R. Acad. Sci. Paris Sér. I. Math., 2000, 330: 93-98

[10]

Kartsatos A., Kurta V.. On a Liouville-type theorem and the Fujita blow-up phenomenon. Proc. Amer. Math. Soc., 2003, 132: 807-813

[11]

Zheng T. T., Zhao J. N.. A note to the Cauchy problem for the degenerate parabolic equations with strongly nonlinear sources. Sci. China Ser. A, 2008, 51: 2059-2071

AI Summary AI Mindmap
PDF

165

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/