Exact boundary controllability for a kind of second-order quasilinear hyperbolic systems

Ke Wang

Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (6) : 803 -822.

PDF
Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (6) : 803 -822. DOI: 10.1007/s11401-011-0683-y
Article

Exact boundary controllability for a kind of second-order quasilinear hyperbolic systems

Author information +
History +
PDF

Abstract

Based on the theory of semi-global C 1 solution and the local exact boundary controllability for first-order quasilinear hyperbolic systems, the local exact boundary controllability for a kind of second-order quasilinear hyperbolic systems is obtained by a constructive method.

Keywords

First-order quasilinear hyperbolic systems / Second-order quasilinear hyperbolic systems / Exact boundary controllability / Mixed initial-boundary value problem

Cite this article

Download citation ▾
Ke Wang. Exact boundary controllability for a kind of second-order quasilinear hyperbolic systems. Chinese Annals of Mathematics, Series B, 2011, 32(6): 803-822 DOI:10.1007/s11401-011-0683-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li T. T.. Exact boundary controllability for quasilinear wave equations. J. Comput. Appl. Math., 2006, 190: 127-135

[2]

Li T. T.. Controllability and Observability for Quasilinear Hyperbolic Systems, AIMS Series on Applied Mathematics, 2010, Beijing: American Institute of Mathematical Sciences & Higher Education Press, Springfield

[3]

Li T. T., Jin Y.. Semi-global C 1 solution to the mixed initial-boundary value problem for quasilinear hyperbolic systems. Chin. Ann. Math., 2001, 22B(3): 325-336

[4]

Li T. T., Rao B. P.. Local exact boundary controllability for a class of quasilinear hyperbolic systems. Chin. Ann. Math., 2002, 23B(2): 209-218

[5]

Li T. T., Rao B. P.. Strong (weak) exact controllability and strong (weak) exact observability for quasilinear hyperbolic systems. Chin. Ann. Math., 2010, 31B(5): 723-742

[6]

Li T. T., Yu L. X.. Exact boundary controllability for 1-D quasilinear wave equations. SIAM J. Control Optim., 2006, 45: 1074-1083

[7]

Li T. T., Yu W. C.. Boundary Value Problems for Quasilinear Hyperbolic Systems, Duke Univ. Math. Ser. V, 1985, Durham: Duke Univ. Press

[8]

Wang K.. Global exact boundary controllability for 1-D quasilinear wave equations. Math. Meth. Appl. Sci., 2011, 34: 315-324

[9]

Wang Z. Q.. Exact boundary controllability for nonautonomous quasilinear wave equations. Math. Meth. Appl. Sci., 2007, 30: 1311-1327

[10]

Yao M. S.. Advanced Algebra (in Chinese), 2005, Shanghai: Fudan University Press

[11]

Yu L. X.. Exact boundary controllability for second order quasilinear hyperbolic systems. Chin. J. Engin. Math., 2005, 22: 199-211

[12]

Yu L. X.. Exact boundary controllability for a kind of second-order quasilinear hyperbolic systems and its applications. Math. Meth. Appl. Sci., 2010, 33: 273-286

[13]

Zhuang K. L., Shang P. P.. Exact boundary controllability for second order quasilinear hyperbolic equations (in Chinese). Chin. J. Engin. Math., 2009, 26(6): 1005-1020

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/