String equations of the q-KP hierarchy

Kelei Tian , Jingsong Hea , Yucai Su , Yi Cheng

Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (6) : 895 -904.

PDF
Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (6) : 895 -904. DOI: 10.1007/s11401-011-0678-8
Article

String equations of the q-KP hierarchy

Author information +
History +
PDF

Abstract

Based on the Lax operator L and Orlov-Shulman’s M operator, the string equations of the q-KP hierarchy are established from the special additional symmetry flows, and the negative Virasoro constraint generators {L n, n ≥ 1} of the 2-reduced q-KP hierarchy are also obtained.

Keywords

q-KP hierarchy / Additional symmetry / String equations / Virasoro constraints

Cite this article

Download citation ▾
Kelei Tian, Jingsong Hea, Yucai Su, Yi Cheng. String equations of the q-KP hierarchy. Chinese Annals of Mathematics, Series B, 2011, 32(6): 895-904 DOI:10.1007/s11401-011-0678-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Klimyk A., Schmüdgen K.. Quantum Groups and Their Representations, 1997, Berlin: Springer-Verlag

[2]

Kac V., Cheung P.. Quantum Calculus, 2002, New York: Springer-Verlag

[3]

Zhang D. H.. Quantum deformation of KdV hierarchies and their infinitely many conservation laws. J. Phys. A, 1993, 26: 2389-2407

[4]

Wu Z. Y., Zhang D. H., Zheng Q. R.. Quantum deformation of KdV hierarchies and their exact solutions: q-deformed solitons. J. Phys. A, 1994, 27: 5307-5312

[5]

Mas J., Seco M.. The algebra of q-pseudodifferential symbols and the q-W KP (n) algebra. J. Math. Phys., 1996, 37: 6510-6529

[6]

Frenkel E., Reshetikhin N.. Quantum affine algebras and deformations of the Virasoro and W-algebras. Comm. Math. Phys., 1996, 178: 237-264

[7]

Frenkel E.. Deformations of the KdV hierarchy and related soliton equations. Int. Math. Res. Not., 1996, 2: 55-76

[8]

Khesin B., Lyubashenko V., Roger C.. Extensions and contractions of the Lie algebra of qpseudodifferential symbols on the circle. J. Funct. Anal., 1997, 143: 55-97

[9]

Haine L., Iliev P.. The bispectral property of a q-deformation of the Schur polynomials and the q-KdV hierarchy. J. Phys. A, 1997, 30: 7217-7227

[10]

Iliev P.. Solutions to Frenkel’s deformation of the KP hierarchy. J. Phys. A, 1998, 31: 241-244

[11]

Iliev P.. Tau function solutions to a q-deformation of the KP hierarchy. Lett. Math. Phys., 1998, 44: 187-200

[12]

Tu M. H.. q-deformed KP hierarchy: its additional symmetries and infinitesimal Bäcklund transformations. Lett. Math. Phys., 1999, 49: 95-103

[13]

Iliev P.. q-KP hierarchy, bispectrality and Calogero-Moser systems. J. Geom. Phys., 2000, 35: 157-182

[14]

He, J. S., Li, Y. H. and Cheng, Y., q-deformed KP hierarchy and its constrained sub-hierarchy, SIGMA, 2, 2006, 060, 33 pages.

[15]

Morozov A.. Integrability and matrix models. Phys. Usp, 1994, 37: 1-55

[16]

Mironov A.. WDVV equations in Seiberg-Witten theory and associative algebras. Nuclear Phys. B Proc. Suppl., 1998, 61: 177-185

[17]

Aratyn H., Gomes J. F., Zimerman A. H.. Integrable hierarchy for multidimensional Toda equations and topological-anti-topological fusion. J. Geom. Phys., 2003, 46: 21-47

[18]

Alexandrov A., Mironov A., Morozov A.. Solving Virasoro constraints in matrix models. Fortschr. Phys., 2005, 53: 512-521

[19]

Mironov A., Morozov A.. Virasoro constraints for Kontsevich-Hurwitz partition function. J. High Energy Phys., 2009, 02: 024

[20]

Shen H. F., Tu M. H.. On the string equation of the BKP hierarchy. Int. J. Mode. Phys. A, 2009, 24(22): 4193-4208

[21]

Date E., Kashiwara M., Jimbo M., Miwa T.. Jimbo M., Miwa T.. Transformation groups for soliton equations, Nonlinear Integrable Systems-Classical and Quantum Theory, 1983, Singapore: World Scientific 39-119

[22]

Orlov A. Yu., Schulman E. I.. Additional symmetries of integrable equations and conformal algebra reprensentaion. Lett. Math. Phys., 1986, 12: 171-179

[23]

Dickey L. A.. On additional symmetries of the KP hierarchy and Sato’s Backlund transformation. Comm. Math. Phys., 1995, 167: 227-233

[24]

Adler M., Shiota T., van Moerbeke P.. A Lax representation for the vertex operator and the central extension. Comm. Math. Phys., 1995, 171: 547-588

[25]

Adler M., Shiota T., van Moerbeke P.. From the w -algebra to its central extension: a τ-function approach. Phys. Lett. A, 1994, 194: 33-43

[26]

Panda S., Roy S.. The Lax operator approach for the Virasoro and the W-constraints in the generalized KdV hierarchy. Internat. J. Modern Phys. A, 1993, 8: 3457-3478

[27]

Panda S., Roy S.. Remarks on the additional symmetries and W-constraints in the generalized KdV hierarchy. Phys. Lett. B, 1992, 296: 23-27

[28]

Dickey L. A.. Soliton Equations and Hamiltonian Systems, 2003 2nd ed. Singapore: World Scientific

[29]

Dickey L. A.. Additional symmetries of KP, Grassmannian, and the string equation. Mod. Phys. Lett. A, 1993, 8: 1259-1272

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/