Completeness of the system of root vectors of 2 × 2 upper triangular infinite-dimensional hamiltonian operators in symplectic spaces and applications

Hua Wang , Alatancang , Junjie Huang

Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (6) : 917 -928.

PDF
Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (6) : 917 -928. DOI: 10.1007/s11401-011-0676-x
Article

Completeness of the system of root vectors of 2 × 2 upper triangular infinite-dimensional hamiltonian operators in symplectic spaces and applications

Author information +
History +
PDF

Abstract

The authors investigate the completeness of the system of eigen or root vectors of the 2 × 2 upper triangular infinite-dimensional Hamiltonian operator H 0. First, the geometrical multiplicity and the algebraic index of the eigenvalue of H 0 are considered. Next, some necessary and sufficient conditions for the completeness of the system of eigen or root vectors of H 0 are obtained. Finally, the obtained results are tested in several examples.

Keywords

2 × 2 upper triangular infinite-dimensional Hamiltonian operator / Eigenvector / Root vector / Completeness

Cite this article

Download citation ▾
Hua Wang, Alatancang, Junjie Huang. Completeness of the system of root vectors of 2 × 2 upper triangular infinite-dimensional hamiltonian operators in symplectic spaces and applications. Chinese Annals of Mathematics, Series B, 2011, 32(6): 917-928 DOI:10.1007/s11401-011-0676-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhong W. X.. Method of separation of variables and Hamiltonian system (in Chinese). Comput. Struct. Mech. Appl., 1991, 8(3): 229-239

[2]

Zhong W. X.. A New Systematic Methodology for Theory of Elasticity (in Chinese), 1995, Dalian: Dalian University of Technology Press

[3]

Zhou Z. H., Xu X. S., Leung A. Y. T.. The mode III stress electric intensity factors and singularities analysis for edge-cracked circular piezoelectric shafts. Internat. J. Solids Structures, 2009, 46: 3577-3586

[4]

Yao Z., Zhang H. W., Wang J. B. Symplectic analysis for phonon dispersion of carbon nanotubes based on inter-bell model (in Chinese). Chin. J. Solid Mech., 2008, 29(1): 13-22

[5]

Kurina G. A.. Invertibility of nonnegatively Hamiltonian operators in a Hilbert space. Diff. Eqs., 2001, 37(6): 880-882

[6]

Azizov T. Y., Dijksma A., Gridneva I. V.. On the boundedness of Hamiltonian operators. Proc. Amer. Math. Soc., 2002, 131(2): 563-576

[7]

Huang J. J., Alatancang Wu H. Y.. Descriptions of spectra of infinite dimensional Hamiltonian operators and their applications. Math. Nachr., 2010, 283(8): 1144-1154

[8]

Alatancang Huang J. J., Fan X. Y.. The residual spectrum for a class of infinite dimensional Hamiltonian operators in L 2× L 2. Acta Math. Sci., Ser. A, 2005, 25(7): 1040-1045

[9]

Wu D. Y., Alatancang Invertibility of nonnegatively Hamiltonian operators (in Chinese). Chin. Ann. Math., 2008, 29A(5): 719-724

[10]

Alatancang Huang J. J., Fan X. Y.. Structure of the spectrum for infinite dimensional Hamiltonian operators. Sci. in China Ser. A, 2008, 51(5): 915-924

[11]

Huang J. J., Alatancang Chen A.. Completeness for the eigenfunction system of a class of infinite dimensional Hamiltonian operators (in Chinese). Acta Math. Appl. Sinica, 2008, 31(3): 457-466

[12]

Wu D. Y., Alatancang Completeness in the sense of Cauchy principal value of the eigenfunction systems of infinite dimensional Hamiltonian operator. Sci. in China Ser. A, 2009, 52(1): 173-180

[13]

Huang J. J., Alatancang Wang H.. The symplectic eigenfunction expansion theorem and its application to the plate bending equation. Chin. Phy. B, 2009, 18(9): 3616-3623

[14]

Wang H., Alatancang Huang J. J.. Completeness of root vector systems of a class of infinite-dimensional Hamiltonian operators (in Chinese). Acta Math. Sinica, 2011, 54(4): 541-552

AI Summary AI Mindmap
PDF

108

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/