Homoclinic flip bifurcations accompanied by transcritical bifurcation

Xingbo Liu

Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (6) : 905 -916.

PDF
Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (6) : 905 -916. DOI: 10.1007/s11401-011-0675-y
Article

Homoclinic flip bifurcations accompanied by transcritical bifurcation

Author information +
History +
PDF

Abstract

The bifurcations of orbit flip homoclinic loop with nonhyperbolic equilibria are investigated. By constructing local coordinate systems near the unperturbed homoclinic orbit, Poincaré maps for the new system are established. Then the existence of homoclinic orbit and the periodic orbit is studied for the system accompanied with transcritical bifurcation.

Keywords

Transcritical bifurcation / Homoclinic orbit / Periodic orbit / Local coordinate system / Poincaré maps

Cite this article

Download citation ▾
Xingbo Liu. Homoclinic flip bifurcations accompanied by transcritical bifurcation. Chinese Annals of Mathematics, Series B, 2011, 32(6): 905-916 DOI:10.1007/s11401-011-0675-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aronson D. G., Krupa M., van Gils S. A.. Homoclinic twist bifurcations with ℤ2 symmetry. J. Non. Sci., 1994, 4: 195-219

[2]

Bonatti C., Diaz L. J., Marcelo V.. Dynamics Beyond Uniform Hyperbolicity: A Global Geometric and Probabilistic Perspective, 2005, Berlin: Springer-Verlag

[3]

Battelli, F. and Palmer, K., Shilnikov Saddle-Focus Homoclinic Orbits in Singularly Perturbed Systems in Dimension Higher than Three, ENOC-2008, Saint Peterburg, Russia, 2008.

[4]

Homburg A. J.. Singular heteroclinic cycles. J. Diff. Eqs., 2000, 161: 358-402

[5]

Li J. B., Zhao X. H., Chen G. R.. Breaking wave solutions to the second class of singular nonlinear traveling wave equations. Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2009, 19(4): 1289-1306

[6]

Homoburg A. J., Knobloch J.. Multiple homoclinic orbits in conservative and reversible systems. Trans. Amer. Math. Soc., 2006, 358: 1715-1740

[7]

Morales C. A., Pacifico M. J.. Inclination-flip homoclinic orbits arising from orbit-flip. Nonlinearity, 2001, 14: 379-393

[8]

Rademacher J. D. M.. Homoclinic orbits near heteroclinic cycles with one equilibrium and one periodic orbit. J. Diff. Eqs., 2005, 218: 390-443

[9]

Yagasaki K.. The method of Melnikov for perturbations of multi-degree-of-freedom Hamiltonian systems. Nonlinearity, 1999, 12: 799-822

[10]

Knobloch J., Wagenknecht T.. Homoclinic snaking near a heteroclinic cycle in reversible systems. Physica D, 2005, 1: 82-93

[11]

Robinson R. C.. Nonsymmetric Lorenz attaractors from a homoclinic bifurcation. SIAM J. Math. Anal., 2000, 32: 119-141

[12]

Homburg A. J., Krauskopf B.. Resonant homoclinic flip bifurcations. J. Dynam. Diff. Eqs., 2000, 12(4): 807-850

[13]

Shui S. L.. Codimension 3 non-resonant bifurcations of rough heteroclinic loops with one orbit flip. Chin. Ann. Math., 2006, 27B(6): 657-674

[14]

Naudot V.. A strange attractor in the unfolding of an orbit-flip homoclinic orbit. Dyn. Syst., 2002, 17(1): 45-63

[15]

Morales C. A.. On inclination-flip homoclinic orbit associated to a saddle-node singularity. Bol. Soc. Bras. Math., 1996, 27(2): 145-160

[16]

Klaus J., Knobloch J.. Bifurcation of homoclinic orbits to a saddle-center in reversible systems. Inter. J. Bifur. Chaos, 2003, 13(9): 2603-2622

[17]

Wagenknecht T.. Two-heteroclinic orbits emerging in the reversible homoclinic pitchfork bifurcation. Nonlinearity, 2005, 18(2): 527-542

[18]

Deng B.. Homoclinic bifurcations with nonhyperbolic equilibria. SIAM J. Math. Anal., 1990, 21: 693-720

[19]

Chow S. N., Lin X. B.. Bifurcation of a homoclinic orbit with a saddle node equilibrium. Diff. Integral Eqs., 1990, 3: 435-466

[20]

Krauskopf B., Oldeman B. E.. Bifurcations of global reinjection orbits near a saddle-node Hopf bifurcation. Nonlinearity, 2006, 19: 2149-2167

[21]

Dumortier F., Roussarie R., Sotomayor J.. Generic 3-parameter families of vector fields on the plane, unfolding a singularity with nilpotent linear part: The cusp case of codimension 3. Ergodic Theory Dynam. Syst., 1987, 7: 375-413

[22]

Lamb J. S. W., Teixeira M. A., Kevin N. W.. Heteroclinic bifurcations near Hopf-zero bifurcation in reversible vector fields in R 3. J. Diff. Eqs., 2005, 219: 78-115

[23]

Fečkan M., Gruendler J.. Homoclinic-Hopf interaction: an autoparametric bifurcation. Proc. Roy. Soc. Edinburgh, 2000, 130: 999-1015

[24]

Champneys A. R., Härterich J., Sandstede B. A.. Non-trans verse homoclinic orbit to a saddle-node equilibrium. Ergodic Theory Dyn. Syst., 1996, 16: 431-450

[25]

Ye Z. Y., Han M. A.. Bifurcations of subharmonic solutions and invariant tori for a singularly perturbed system. Chin. Ann. Math., 2007, 28B(2): 135-147

[26]

Zhu D. M., Xia Z. H.. Bifurcations of heteroclinic loops. Sci. in China, Ser. A, 1998, 41(8): 837-848

[27]

Geng F. J., Zhu D. M.. Bifurcations of generic heteroclinic loop accompanied by transcritical bifurcation. Inter. J. Bifur. Chaos, 2008, 18: 1069-1083

[28]

Zhang T. S., Zhu D. M.. Codimension 3 homoclinic bifurcation of orbit flip with resonant eigenvalues corresponding to the tangent directions. Inter. J. Bifur. Chaos, 2004, 14: 4161-4175

[29]

Deng B.. The Silnikov problem, exponential expansion, strong λ-Lemma, C 1-linearization, and homoclinic bifurcation. J. Diff. Eqs., 1989, 79: 189-231

[30]

Wiggins S.. Introduction to Applied Nonlinear Dynamical Systems and Chaos, 1990, New York: Springer-Verlag

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/