Explicit traveling wave solutions to nonlinear evolution equations

Linghai Zhang

Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (6) : 929 -964.

PDF
Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (6) : 929 -964. DOI: 10.1007/s11401-011-0674-z
Article

Explicit traveling wave solutions to nonlinear evolution equations

Author information +
History +
PDF

Abstract

First of all, some technical tools are developed. Then the author studies explicit traveling wave solutions to nonlinear dispersive wave equations, nonlinear dissipative dispersive wave equations, nonlinear convection equations, nonlinear reaction diffusion equations and nonlinear hyperbolic equations, respectively.

Keywords

Explicit traveling wave solutions / Nonlinear partial differential equations / Reduction of order

Cite this article

Download citation ▾
Linghai Zhang. Explicit traveling wave solutions to nonlinear evolution equations. Chinese Annals of Mathematics, Series B, 2011, 32(6): 929-964 DOI:10.1007/s11401-011-0674-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Benton E. R., Platzman G. W.. A table of solutions of the one-dimensional Burgers equation. Quart. Appl. Math., 1972, 30: 195-212

[2]

Bikbaev R. F.. Shock waves in the modified Korteweg-de Vries-Burgers equation. J. Nonlinear Sci., 1995, 5: 1-10

[3]

Bona J. L., Schonbek M. E.. Travelling-wave solutions to the Korteweg-de Vries-Burgers equation. Proc. Roy. Soc. Edinburgh Sect. A, 1985, 101: 207-226

[4]

Chakravarty S., Kodama Y.. Soliton solutions of the KP equation and application to shallow water waves. Stud. Appl. Math., 2009, 123: 83-151

[5]

Chen M., Nguyen N. V., Sun S. M.. Solitary-wave solutions to Boussinesq systems with large surface tension. Discrete Contin. Dyn. Syst., 2010, 26: 1153-1184

[6]

Chen Y., Yan Z. Y., Zhang H.. New explicit solitary wave solutions for (2+1)-dimensional Boussinesq equation and (3 + 1)-dimensional KP equation. Phys. Lett. A, 2003, 307: 107-113

[7]

Chung K. W., Yuan X. P.. Periodic and quasi-periodic solutions for the complex Ginzburg-Landau equation. Nonlinearity, 2008, 21: 435-451

[8]

David C., Fernando R., Feng Z. S.. On solitary wave solutions of the compound Burgers-Korteweg-de Vries equation. Phys. A, 2007, 375: 44-50

[9]

Feng Z. S.. Exact solutions to the Burgers-Korteweg-de Vries equation. J. Phys. Soc. Japan, 2002, 71: 1-4

[10]

Feng Z. S.. Exact solution to an approximate Sine-Gordon equation in (n + 1)-dimensional space. Phys. Lett. A, 2002, 302: 64-76

[11]

Feng Z. S.. Travelling wave solutions and proper solutions to the two-dimensional Burgers-Korteweg-de Vries equation. J. Phys. A, 2003, 36: 8817-8827

[12]

Feng Z. S.. On traveling wave solutions to modified Burgers-Korteweg-de Vries equation. Phys. Lett. A, 2003, 318: 522-525

[13]

Feng Z. S.. An exact solution to the Korteweg-de Vries-Burgers equation. Appl. Math. Lett., 2005, 18: 733-737

[14]

Feng Z. S.. On travelling wave solutions of the Burgers-Korteweg-de Vries equation. Nonlinearity, 2007, 20: 343-356

[15]

Feng Z. S.. Traveling wave behavior for a generalized Fisher equation. Chaos Solitons Fractals, 2008, 38: 481-488

[16]

Feng Z. S., Meng Q. G.. Burgers-Korteweg-de Vries equation and its traveling solitary waves. Sci. China Ser. A, 2007, 50: 412-422

[17]

Geng F. Z., Cui M. G.. The representations of exact solution of the compound Burgers-Korteweg-de Vries equation. Int. J. Evol. Equ., 2008, 3: 133-145

[18]

Hoenselaers C.. Solutions of the hyperbolic Sine-Gordon equations. Internat. J. Theoret. Phys., 2007, 46: 1096-1099

[19]

Huang Y., Dai Z. D.. Exact solitary wave solutions for a cubic 2D Ginzburg-Landau equation. Far East J. Dyn. Syst., 2009, 11: 95-105

[20]

Ibrahim S., Majdoub M., Masmoudi N.. Global solutions for a semilinear, two-dimensional Klein-Gordon equation with exponential-type nonlinearity. Comm. Pure Appl. Math., 2006, 59: 1639-1658

[21]

Jacobs D., McKinney B., Shearer M.. Travelling wave solutions of the modified Korteweg-de Vries-Burgers equation. J. Differential Equations, 1995, 116: 448-467

[22]

Jang B.. New exact travelling wave solutions of nonlinear Klein-Gordon equations. Chaos Solitons Fractals, 2009, 41: 646-654

[23]

Jeffrey A., Xu S. Q.. Exact solutions to the Korteweg-de Vries-Burgers equation. Wave Motion, 1989, 11: 559-564

[24]

Lenells J., Fokas A. S.. On a novel integrable generalization of the Sine-Gordon equation. J. Math. Phys., 2010, 51: 023519

[25]

Lewicka M., Mucha P. B.. On the existence of traveling waves in the 3D Boussinesq system. Comm. Math. Phy., 2009, 292: 417-429

[26]

Liu C. F., Dai Z. D.. Exact periodic solitary wave solutions for the (2 + 1)-dimensional Boussinesq equation. J. Math. Anal. Appl., 2010, 367: 444-450

[27]

Liu S. D., Liu S. K., Ye Q. X.. Explicit traveling wave solutions of nonlinear evolution equations (in Chinese). Math. Practice Theory, 1998, 28: 289-301

[28]

Ma W. X.. An exact solution to two-dimensional Korteweg-de Vries-Burgers equation. J. Phys. A, 1993, 26: L17-L20

[29]

Matsuno Y.. A direct method for solving the generalized Sine-Gordon equation. J. Phys. A, 2010, 43: 105204

[30]

Parkes E. J.. Exact solutions to the two-dimensional Korteweg-de Vries-Burgers equation. J. Phys. A, 1994, 27: L497-L501

[31]

Rinzel J., Keller J. B.. Traveling wave solutions of a nerve conduction equation. Biophysics J., 1973, 13: 1313-1337

[32]

Sahu B., Roychoudhury R.. Travelling wave solution of Korteweg-de Vries-Burger’s equation. Czechoslovak J. Phys., 2003, 53: 517-527

[33]

Shen J. W.. Shock wave solutions of the compound Burgers-Korteweg-de Vries equation. Appl. Math. Comput., 2008, 196: 842-849

[34]

Sirendaoreji Exact solutions of the two-dimensional Burgers equation. J. Phys. A, 1999, 32: 6897-6900

[35]

Sirendaoreji Exact travelling wave solutions for four forms of nonlinear Klein-Gordon equations. Phys. Lett. A, 2007, 363: 440-447

[36]

Wang M. X., Xiong S. L., Ye Q. X.. Explicit wave front solutions of Noyes-Field systems for the Belousov-Zhabotinskii reaction. J. Math. Anal. Appl., 1994, 182: 705-717

[37]

Wang X. Y.. Exact solitary wave solutions of the generalized Fisher equation. Chinese Sci. Bull., 1989, 34: 106-109

[38]

Wang Z., Zhang H. Q.. Many new kinds exact solutions to (2 +1)-dimensional Burgers equation and Klein-Gordon equation used a new method with symbolic computation. Appl. Math. Comput., 2007, 186: 693-704

[39]

Ye Q. X., Li Z. Y.. Introduction to Reaction-Diffusion Equations, Foundations of Modern Mathematics Series, 1990, Beijing: Science Press

[40]

Zaki S. I.. Solitary waves of the Korteweg-de Vries-Burgers’ equation. Comput. Phys. Comm., 2000, 126: 207-218

[41]

Zayko Y. N., Nefedov I. S.. New class of solutions of the Korteweg-de Vries-Burgers equation. Appl. Math. Lett., 2001, 14: 115-121

[42]

Zhang J. L., Wang M. L., Gao K. Q.. Exact solutions of generalized Zakharov and Ginzburg-Landau equations. Chaos Solitons Fractals, 2007, 32: 1877-1886

[43]

Zhang L. H.. Traveling waves arising from synaptically coupled neuronal networks, Advances in Mathematics Research, Vol. 10, 2010, New York: Nova Science Publishers Inc. 53-204

[44]

Zheng Y., Lai S. Y.. A study on three types of nonlinear Klein-Gordon equations. Dyn. Contin. Discrete Impuls. Syst., Ser. B Appl. Algorithms, 2009, 16: 271-279

[45]

Zhong P. H., Yang R. H., Yang G. S.. Exact periodic and blow up solutions for 2D Ginzburg-Landau equation. Phys. Lett. A, 2008, 373: 19-22

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/