A criterion of normality concerning holomorphic functions whose derivative omits a function

Xiaojun Liu , Yasheng Ye

Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (5) : 699 -710.

PDF
Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (5) : 699 -710. DOI: 10.1007/s11401-011-0671-2
Article

A criterion of normality concerning holomorphic functions whose derivative omits a function

Author information +
History +
PDF

Abstract

The authors discuss the normality concerning holomorphic functions and get the following result. Let F be a family of holomorphic functions on a domain D ⊂ ℂ, all of whose zeros have multiplicity at least k, where k ≥ 2 is an integer. And let h(z) ≢ 0 be a holomorphic function on D. Assume also that the following two conditions hold for every fF: (a) f(z) = 0 ⇒ |f (k)(z)| < |h(z)|; (b) f (k)(z) ≠ h(z). Then F is normal on D.

Keywords

Normal family / Holomorphic functions / Omitted function

Cite this article

Download citation ▾
Xiaojun Liu, Yasheng Ye. A criterion of normality concerning holomorphic functions whose derivative omits a function. Chinese Annals of Mathematics, Series B, 2011, 32(5): 699-710 DOI:10.1007/s11401-011-0671-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Clunie J., Hayman W. K.. The spherical derivative of integral and meromorphic functions. Comment. Math. Helv., 1966, 40: 117-148

[2]

Liu X. J., Nevo S.. A criterion of normality based on a single holomorphic function. Acta Math. Sinica, 2011, 27: 141-154

[3]

Pang X. C.. Bloch’s principle and normal criterion. Sci. China Ser. A, 1989, 32: 782-791

[4]

Pang X. C.. Shared values and normal families. Analysis, 2002, 22: 175-182

[5]

Pang X. C., Yang D. G., Zalcman L.. Normal families of meromorphic functions whose derivative omit a function. Comput. Methods Funct. Theory, 2002, 2: 257-265

[6]

Pang X. C., Zalcman L.. Normal families and shared values. Bull. London Math. Soc., 2000, 32: 325-331

[7]

Pang X. C., Zalcman L.. Normal families of meromorphic functions with multiple zeros and poles. Israel J. Math., 2003, 136: 1-9

[8]

Wang Y. F., Fang M. L.. Picard values and normal families of meromorphic functions with multiple zeros. Acta Math. Sinica, 1998, 14: 17-26

[9]

Zalcman L.. A heuristic principle in complex function theory. Amer. Math. Monthly, 1975, 82: 813-817

[10]

Zalcman L.. Normal families: new perspectives. Bull. Amer. Math. Soc. (N. S.), 1998, 35: 215-230

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/