A criterion of normality concerning holomorphic functions whose derivative omits a function
Xiaojun Liu , Yasheng Ye
Chinese Annals of Mathematics, Series B ›› 2011, Vol. 32 ›› Issue (5) : 699 -710.
A criterion of normality concerning holomorphic functions whose derivative omits a function
The authors discuss the normality concerning holomorphic functions and get the following result. Let F be a family of holomorphic functions on a domain D ⊂ ℂ, all of whose zeros have multiplicity at least k, where k ≥ 2 is an integer. And let h(z) ≢ 0 be a holomorphic function on D. Assume also that the following two conditions hold for every f ∈ F: (a) f(z) = 0 ⇒ |f (k)(z)| < |h(z)|; (b) f (k)(z) ≠ h(z). Then F is normal on D.
Normal family / Holomorphic functions / Omitted function
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
/
| 〈 |
|
〉 |